|
@@ -0,0 +1,124 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+# time: 2023/3/2 10:28
|
|
|
+# file: config.py
|
|
|
+# author: David
|
|
|
+# company: shenyang JY
|
|
|
+
|
|
|
+"""
|
|
|
+模型调参及系统功能配置
|
|
|
+"""
|
|
|
+import argparse
|
|
|
+import pandas as pd
|
|
|
+from pathlib import Path
|
|
|
+from app.common.logs import params, logger
|
|
|
+
|
|
|
+""""
|
|
|
+调用思路
|
|
|
+ xxxx 1. 从入口参数中获取IN OUT文件位置 xxxx
|
|
|
+ 2. 按照训练和预测加载和解析数据
|
|
|
+ 3. 对数据进行预处理
|
|
|
+ 4. 执行训练,保存模型,输出状态
|
|
|
+ 5. 执行预测,输出结果,输出状态
|
|
|
+"""
|
|
|
+
|
|
|
+def material(input_file, isDq=True):
|
|
|
+ basi, station_info_w, station_info_d_w, station_info_s, station_info_d_s, nwp_w, nwp_s, nwp_w_h, nwp_s_h, power = (
|
|
|
+ 'DQYC_IN_BASIC.txt', 'DQYC_IN_PLANT_WIND.txt', 'DQYC_IN_PLANT_DETAIL_WIND.txt', 'DQYC_IN_PLANT_SOLAR.txt',
|
|
|
+ 'DQYC_IN_PLANT_DETAIL_SOLAR.txt', 'DQYC_IN_FORECAST_WEATHER_WIND.txt', 'DQYC_IN_FORECAST_WEATHER_SOLAR.txt',
|
|
|
+ 'DQYC_IN_FORECAST_WEATHER_WIND_H.txt', 'DQYC_IN_FORECAST_WEATHER_SOLAR_H.txt', 'DQYC_IN_HISTORY_POWER_LONG.txt')
|
|
|
+ basi_area = 'DQYC_AREA_IN_BASIC'
|
|
|
+ nwp_v, nwp_v_h = 'DQYC_IN_FORECAST_WEATHER.txt', 'DQYC_IN_FORECAST_WEATHER_H.txt' # 多版本气象
|
|
|
+ nwp_own, nwp_own_h = 'DQYC_IN_FORECAST_WEATHER_OWNER.txt', 'DQYC_IN_FORECAST_WEATHER_OWNER_H.txt', # 自有气象
|
|
|
+ env_wf, env_sf = 'DQYC_IN_ACTUAL_WEATHER_WIND', 'DQYC_IN_ACTUAL_WEATHER_SOLAR' # 实测气象
|
|
|
+ input_file = Path(input_file)
|
|
|
+ env_w, env_s = None, None
|
|
|
+ basic = pd.read_csv(input_file / basi, sep=r'\s+', header=0)
|
|
|
+ power = pd.read_csv(input_file / power, sep=r'\s+', header=0)
|
|
|
+ plant_type = int(basic.loc[basic['PropertyID'].to_list().index(('PlantType')), 'Value'])
|
|
|
+ if isDq:
|
|
|
+ nwp_v = pd.read_csv(input_file / '0' / nwp_v, sep=r'\s+', header=0)
|
|
|
+ nwp_v_h = pd.read_csv(input_file / '0' / nwp_v_h, sep=r'\s+', header=0)
|
|
|
+ nwp_own = pd.read_csv(input_file / '1' / nwp_own, sep=r'\s+', header=0)
|
|
|
+ nwp_own_h = pd.read_csv(input_file / '1' / nwp_own_h, sep=r'\s+', header=0)
|
|
|
+ if params['switch_nwp_owner']:
|
|
|
+ nwp_v, nwp_v_h = nwp_own, nwp_own_h
|
|
|
+ # 如果是风电
|
|
|
+ if plant_type == 0:
|
|
|
+ station_info = pd.read_csv(input_file / station_info_w, sep=r'\s+', header=0)
|
|
|
+ station_info_d = pd.read_csv(input_file / station_info_d_w, sep=r'\s+', header=0)
|
|
|
+ nwp = pd.read_csv(input_file / nwp_w, sep=r'\s+', header=0)
|
|
|
+ nwp_h = pd.read_csv(input_file / nwp_w_h, sep=r'\s+', header=0)
|
|
|
+ if (input_file / env_wf).exists():
|
|
|
+ env_w = pd.read_csv(input_file / env_wf, sep=r'\s+', header=0)
|
|
|
+ return station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h, env_w
|
|
|
+ # 如果是光伏
|
|
|
+ elif plant_type == 1:
|
|
|
+ station_info = pd.read_csv(input_file / station_info_s, sep=r'\s+', header=0)
|
|
|
+ station_info_d = pd.read_csv(input_file / station_info_d_s, sep=r'\s+', header=0)
|
|
|
+ nwp = pd.read_csv(input_file / nwp_s, sep=r'\s+', header=0)
|
|
|
+ nwp_h = pd.read_csv(input_file / nwp_s_h, sep=r'\s+', header=0)
|
|
|
+ if (input_file / env_sf).exists():
|
|
|
+ env_s = pd.read_csv(input_file / env_sf, sep=r'\s+', header=0)
|
|
|
+ return station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h, env_s
|
|
|
+ else:
|
|
|
+ # 区域级预测待定,可能需要遍历获取场站数据
|
|
|
+ basic_area = pd.read_csv(input_file / basi_area, sep=r'\s+', header=0)
|
|
|
+ return basic_area
|
|
|
+
|
|
|
+def clean_power(power, env, plant_id):
|
|
|
+ env_power = pd.merge(env, power, on=params['col_time'])
|
|
|
+ if 'HubSpeed' in env.columns.tolist():
|
|
|
+ from app.common.limited_power_wind import LimitPower
|
|
|
+ lp = LimitPower(logger, params, env_power)
|
|
|
+ power = lp.clean_limited_power(plant_id, True)
|
|
|
+ elif 'Irradiance' in env.columns.tolist():
|
|
|
+ from app.common.limited_power_solar import LimitPower
|
|
|
+ lp = LimitPower(logger, params, env_power)
|
|
|
+ power = lp.clean_limited_power(plant_id, True)
|
|
|
+ return power
|
|
|
+
|
|
|
+
|
|
|
+def input_file_handler(input_file: str, model_name: str):
|
|
|
+ # DQYC:短期预测,qy:区域级
|
|
|
+ if 'dqyc' in input_file.lower():
|
|
|
+ station_info, station_info_d, nwp, nwp_h, power, nwp_v, nwp_v_h, env = material(input_file, True)
|
|
|
+ cap = round(float(station_info['PlantCap'][0]), 2)
|
|
|
+ plant_id = int(station_info['PlantID'][0])
|
|
|
+ # 含有model,训练
|
|
|
+ if 'model' in input_file.lower():
|
|
|
+ if env is not None and params['clean_power']: # 进行限电清洗
|
|
|
+ power = clean_power(power, env, plant_id)
|
|
|
+ train_data = pd.merge(nwp_v_h, power, on=params['col_time'])
|
|
|
+ if model_name == 'fmi':
|
|
|
+ from app.model.tf_fmi_train import model_training
|
|
|
+ elif model_name == 'cnn':
|
|
|
+ from app.model.tf_cnn_train import model_training
|
|
|
+ else:
|
|
|
+ from app.model.tf_lstm_train import model_training
|
|
|
+ model_training(train_data, input_file, cap)
|
|
|
+ # 含有predict,预测
|
|
|
+ else:
|
|
|
+ logger.info("训练路径错误!")
|
|
|
+ else:
|
|
|
+ # 区域级预测:未完
|
|
|
+ basic_area = material(input_file, False)
|
|
|
+
|
|
|
+def main():
|
|
|
+ # 创建解析器对象
|
|
|
+ parser = argparse.ArgumentParser(description="程序描述")
|
|
|
+ # 创建
|
|
|
+ # 添加参数
|
|
|
+ parser.add_argument("input_file", help="输入文件路径") # 第一个位置参数
|
|
|
+
|
|
|
+ parser.add_argument("--model_name", default="lstm", help='选择短期模型') # 第二个位置参数
|
|
|
+ # 解析参数
|
|
|
+ args = parser.parse_args()
|
|
|
+
|
|
|
+ # 使用参数
|
|
|
+ print(f"文件: {args.input_file}")
|
|
|
+ input_file_handler(args.input_file, args.model_name)
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|