David 3 kuukautta sitten
vanhempi
commit
7df76b70c7

+ 610 - 0
app/logs/2025-03-24/south-forecast.2025-03-24.0.log

@@ -1851,3 +1851,613 @@
  0.32354 0.32525] - training
 2025-03-24 15:25:56,689 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e1090464fdbe5a30d5a307 - insert_trained_model_into_mongo
 2025-03-24 15:25:56,697 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e1090464fdbe5a30d5a309 - insert_scaler_model_into_mongo
+2025-03-24 15:37:30,960 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:38:50,548 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:38:50,926 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:39:54,363 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:40:28,533 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:41:51,230 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:42:36,739 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:43:28,115 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:43:34,170 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:45:36,573 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:45:41,835 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:46:35,207 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:46:49,802 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:47:07,043 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 15:47:07,044 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpuzv867x2.keras - get_keras_model_from_mongo
+2025-03-24 15:48:02,671 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:48:08,321 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:48:10,104 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 15:48:10,104 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmppp2bur2b.keras - get_keras_model_from_mongo
+2025-03-24 15:48:46,701 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 15:49:15,435 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 15:49:17,502 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 15:49:17,503 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp6jjhhllp.keras - get_keras_model_from_mongo
+2025-03-24 16:25:48,997 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:25:54,990 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 15:25:56) - get_scaler_model_from_mongo
+2025-03-24 16:25:57,123 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 16:25:57,124 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp55bwpy6h.keras - get_keras_model_from_mongo
+2025-03-24 16:27:06,421 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:27:34,098 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:28:03,494 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 16:28:13,423 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 16:28:14,328 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
+2025-03-24 16:28:15,007 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 16:28:29,728 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 16:28:29,729 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 16:28:29,762 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 16:28:29,763 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:28:29,763 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:28:29,764 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 16:28:29,764 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:28:29,765 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:28:29,768 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,768 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 16:28:29,774 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,775 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:28:29,776 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,776 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:28:29,777 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,777 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:28:29,778 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,779 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:28:29,779 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,780 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:28:29,781 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,781 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:28:29,781 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,782 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 16:28:29,782 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 16:28:29,795 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,795 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 16:28:29,797 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 16:28:29,797 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 16:28:29,800 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 16:28:29,800 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:28:29,801 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 16:28:29,801 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:28:29,802 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 16:28:29,803 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:28:29,939 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 16:28:29,939 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:28:29,941 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 16:28:29,941 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 16:28:29,943 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 16:28:31,432 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,438 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 16:28:31,442 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,447 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,452 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,456 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,461 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,466 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,470 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 16:28:31,475 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,479 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,485 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,489 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,493 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,497 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 16:28:31,498 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 16:29:15,220 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:29:15,221 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:29:26,828 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 16:29:27,632 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 16:29:57,341 - tf_lstm.py - INFO - -----模型训练经过28轮迭代----- - training
+2025-03-24 16:29:57,342 - tf_lstm.py - INFO - 训练集损失函数为:[1.02629 0.51363 0.40185 0.35459 0.32764 0.30722 0.29113 0.28102 0.27487
+ 0.27069 0.26745 0.26378 0.2614  0.25867 0.25592 0.25758 0.2541  0.25267
+ 0.24981 0.24854 0.24725 0.24632 0.24614 0.24585 0.24434 0.2443  0.24277
+ 0.24312] - training
+2025-03-24 16:29:57,342 - tf_lstm.py - INFO - 验证集损失函数为:[0.64746 0.46841 0.41888 0.38172 0.35578 0.33682 0.32683 0.32256 0.31833
+ 0.31401 0.31055 0.30685 0.30428 0.30192 0.30389 0.29887 0.29866 0.29472
+ 0.29633 0.29759 0.29883 0.30783 0.31148 0.30816 0.30389 0.30156 0.30865
+ 0.30822] - training
+2025-03-24 16:30:33,003 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e118290a53203110baf559 - insert_trained_model_into_mongo
+2025-03-24 16:30:33,547 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e118290a53203110baf55b - insert_scaler_model_into_mongo
+2025-03-24 16:31:27,711 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:31:37,265 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 16:30:28) - get_scaler_model_from_mongo
+2025-03-24 16:31:48,232 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 16:31:48,234 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp7xxoukqg.keras - get_keras_model_from_mongo
+2025-03-24 16:36:18,503 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:36:18,697 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 16:36:18,750 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 16:36:18,759 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
+2025-03-24 16:36:18,774 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 16:36:18,784 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 16:36:18,784 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 16:36:18,817 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 16:36:18,817 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:36:18,817 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:36:18,818 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 16:36:18,819 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:36:18,819 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:36:18,822 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,822 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 16:36:18,827 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,827 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:36:18,828 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,829 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:36:18,829 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,830 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:36:18,830 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,831 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:36:18,831 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,832 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:36:18,832 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,833 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:36:18,833 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,833 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 16:36:18,834 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 16:36:18,847 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,847 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 16:36:18,848 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 16:36:18,848 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 16:36:18,850 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 16:36:18,850 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:36:18,851 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 16:36:18,851 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:36:18,851 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 16:36:18,852 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:36:18,852 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 16:36:18,853 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:36:18,854 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 16:36:18,854 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 16:36:18,855 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 16:36:18,857 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,860 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 16:36:18,861 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,862 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,863 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,864 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,865 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,866 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,868 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 16:36:18,869 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,870 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,871 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,872 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,873 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,875 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 16:36:18,875 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:36:21,335 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:36:21,531 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 16:36:21,531 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 16:36:30,042 - tf_lstm.py - INFO - -----模型训练经过34轮迭代----- - training
+2025-03-24 16:36:30,043 - tf_lstm.py - INFO - 训练集损失函数为:[0.9643  0.47406 0.38006 0.33788 0.31271 0.29495 0.28256 0.27419 0.26928
+ 0.26494 0.26215 0.25938 0.25772 0.25598 0.25533 0.25299 0.25207 0.25119
+ 0.25038 0.24868 0.24694 0.25517 0.24927 0.24506 0.24366 0.24517 0.24472
+ 0.24305 0.24234 0.24261 0.24163 0.24408 0.24209 0.24256] - training
+2025-03-24 16:36:30,043 - tf_lstm.py - INFO - 验证集损失函数为:[0.61301 0.4526  0.3929  0.36492 0.34239 0.32703 0.31823 0.31337 0.30822
+ 0.30591 0.30293 0.30064 0.29839 0.29845 0.29586 0.29498 0.29576 0.29323
+ 0.29608 0.29809 0.32526 0.29454 0.2927  0.29199 0.3023  0.30548 0.30169
+ 0.30032 0.29995 0.30027 0.3121  0.30454 0.31515 0.3114 ] - training
+2025-03-24 16:36:30,101 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e1198e20b7faa5a8a3e4de - insert_trained_model_into_mongo
+2025-03-24 16:36:30,130 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e1198e20b7faa5a8a3e4e0 - insert_scaler_model_into_mongo
+2025-03-24 16:37:17,731 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:37:22,653 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 16:36:30) - get_scaler_model_from_mongo
+2025-03-24 16:37:36,982 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 16:38:22,317 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp8iqm1cck.keras - get_keras_model_from_mongo
+2025-03-24 16:42:04,247 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:42:39,643 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:42:39,835 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 16:42:39,889 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 16:42:39,897 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
+2025-03-24 16:42:39,912 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 16:42:39,921 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 16:42:39,922 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 16:42:39,955 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 16:42:39,955 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:42:39,955 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:42:39,956 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 16:42:39,956 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:42:39,956 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:42:39,960 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,960 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 16:42:39,965 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,965 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:42:39,966 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,966 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:42:39,967 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,967 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:42:39,968 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,968 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:42:39,969 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,969 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:42:39,970 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,971 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:42:39,972 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,972 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 16:42:39,972 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 16:42:39,987 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,988 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 16:42:39,989 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 16:42:39,989 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 16:42:39,991 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 16:42:39,991 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:42:39,992 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 16:42:39,992 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:42:39,993 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 16:42:39,993 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:42:39,993 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 16:42:39,994 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:42:39,995 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 16:42:39,995 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 16:42:39,995 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 16:42:39,998 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,000 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 16:42:40,001 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,003 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,004 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,005 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,007 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,008 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,009 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 16:42:40,010 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,011 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,012 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,014 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,015 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,015 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 16:42:40,015 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:42:42,468 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:42:42,660 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 16:42:42,660 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 16:42:49,897 - tf_lstm.py - INFO - -----模型训练经过27轮迭代----- - training
+2025-03-24 16:42:49,897 - tf_lstm.py - INFO - 训练集损失函数为:[0.96267 0.4795  0.3828  0.33981 0.31385 0.29333 0.28207 0.27515 0.26941
+ 0.26535 0.26145 0.25899 0.25735 0.25456 0.25272 0.25108 0.24981 0.24775
+ 0.24647 0.24539 0.24586 0.24603 0.24397 0.24372 0.24296 0.24248 0.24168] - training
+2025-03-24 16:42:49,897 - tf_lstm.py - INFO - 验证集损失函数为:[0.59539 0.44493 0.39523 0.36333 0.33706 0.32722 0.32066 0.31653 0.31189
+ 0.3084  0.30568 0.30329 0.3006  0.29764 0.29469 0.29404 0.29394 0.29482
+ 0.29847 0.30606 0.30585 0.30305 0.3043  0.30375 0.30399 0.30229 0.30546] - training
+2025-03-24 16:42:49,937 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e11b09e07150fcb0cf945b - insert_trained_model_into_mongo
+2025-03-24 16:42:49,962 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e11b09e07150fcb0cf945d - insert_scaler_model_into_mongo
+2025-03-24 16:43:02,092 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:43:02,317 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 16:42:49) - get_scaler_model_from_mongo
+2025-03-24 16:43:02,413 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 16:43:02,414 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpx3q11gfa.keras - get_keras_model_from_mongo
+2025-03-24 16:43:38,278 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:43:59,173 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 16:42:49) - get_scaler_model_from_mongo
+2025-03-24 16:44:02,875 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 16:44:04,753 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpllyi19g9.keras - get_keras_model_from_mongo
+2025-03-24 16:46:37,754 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 16:46:54,113 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 16:47:01,978 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 16:47:02,494 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
+2025-03-24 16:47:03,101 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 16:47:05,929 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 16:47:05,929 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 16:47:05,962 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 16:47:05,962 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:47:05,963 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:47:05,964 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 16:47:05,964 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 16:47:05,964 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 16:47:05,968 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,968 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 16:47:05,975 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,975 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:47:05,976 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,976 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:47:05,977 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,977 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 16:47:05,979 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,979 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:47:05,980 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,980 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:47:05,981 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,981 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 16:47:05,982 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 16:47:05,982 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 16:47:05,982 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 16:47:06,132 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 16:47:06,133 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 16:47:06,134 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 16:47:06,135 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 16:47:06,136 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 16:47:06,137 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:47:06,138 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 16:47:06,138 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:47:06,139 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 16:47:06,139 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:47:06,140 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 16:47:06,140 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 16:47:06,141 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 16:47:06,141 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 16:47:06,143 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 16:47:06,750 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,758 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 16:47:06,762 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,767 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,771 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,776 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,781 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,785 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,790 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 16:47:06,795 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,800 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,804 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,808 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,813 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,818 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 16:47:06,818 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 16:47:18,426 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 16:47:18,427 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 16:50:06,912 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 16:50:13,396 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 16:57:55,524 - tf_lstm.py - INFO - -----模型训练经过29轮迭代----- - training
+2025-03-24 16:57:55,586 - tf_lstm.py - INFO - 训练集损失函数为:[0.97667 0.481   0.38455 0.34302 0.31664 0.29749 0.28507 0.27773 0.27194
+ 0.26851 0.26433 0.26113 0.25886 0.25782 0.25613 0.25257 0.25237 0.25089
+ 0.24923 0.24812 0.24534 0.24582 0.24415 0.24344 0.24284 0.24193 0.24205
+ 0.24151 0.24144] - training
+2025-03-24 16:57:55,632 - tf_lstm.py - INFO - 验证集损失函数为:[0.60394 0.44582 0.40218 0.36976 0.34505 0.33046 0.32577 0.31802 0.31591
+ 0.31033 0.30696 0.30481 0.30502 0.30265 0.29893 0.29964 0.29727 0.29644
+ 0.29476 0.29623 0.30499 0.30848 0.30849 0.3045  0.30433 0.30477 0.30999
+ 0.30893 0.30762] - training
+2025-03-24 17:03:00,603 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e11fc4bc458d27a489190c - insert_trained_model_into_mongo
+2025-03-24 17:03:01,163 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e11fc5bc458d27a489190e - insert_scaler_model_into_mongo
+2025-03-24 17:06:59,385 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:06:59,604 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:02:16) - get_scaler_model_from_mongo
+2025-03-24 17:06:59,720 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:06:59,721 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpdm2thyh7.keras - get_keras_model_from_mongo
+2025-03-24 17:08:17,377 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:08:17,564 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 17:08:17,618 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 17:08:17,627 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubSpeed', 'HubDireciton'} - data_column_cleaning
+2025-03-24 17:08:17,642 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 17:08:17,652 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 17:08:17,652 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 17:08:17,685 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 17:08:17,685 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 17:08:17,685 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 17:08:17,686 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 17:08:17,687 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 17:08:17,687 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 17:08:17,690 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,690 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 17:08:17,698 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,698 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:08:17,699 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,699 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:08:17,701 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,701 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:08:17,702 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,702 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:08:17,704 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,704 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:08:17,705 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,705 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:08:17,706 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,706 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 17:08:17,706 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 17:08:17,719 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,719 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 17:08:17,720 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 17:08:17,720 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 17:08:17,722 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 17:08:17,722 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:08:17,723 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 17:08:17,723 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:08:17,724 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 17:08:17,724 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:08:17,725 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 17:08:17,725 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:08:17,727 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 17:08:17,727 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 17:08:17,728 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 17:08:17,731 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,735 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 17:08:17,736 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,737 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,738 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,739 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,740 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,741 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,743 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 17:08:17,744 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,745 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,746 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,747 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,748 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,749 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 17:08:17,750 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:08:20,183 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:08:20,384 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 17:08:20,384 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 17:08:27,815 - tf_lstm.py - INFO - -----模型训练经过28轮迭代----- - training
+2025-03-24 17:08:27,815 - tf_lstm.py - INFO - 训练集损失函数为:[1.00304 0.50132 0.40073 0.35612 0.32649 0.30222 0.288   0.27935 0.27276
+ 0.26797 0.26366 0.26215 0.25902 0.25727 0.25586 0.2526  0.25153 0.24999
+ 0.2468  0.2471  0.24597 0.2473  0.24438 0.24328 0.24272 0.24299 0.2421
+ 0.24151] - training
+2025-03-24 17:08:27,816 - tf_lstm.py - INFO - 验证集损失函数为:[0.63754 0.46007 0.41528 0.3836  0.34785 0.33632 0.33146 0.32125 0.31666
+ 0.31205 0.30924 0.30597 0.30214 0.30073 0.29796 0.29722 0.29637 0.29324
+ 0.29767 0.29886 0.30864 0.30684 0.30177 0.29866 0.30389 0.30451 0.30523
+ 0.30582] - training
+2025-03-24 17:08:27,858 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e1210bd9445a7794dc508b - insert_trained_model_into_mongo
+2025-03-24 17:08:27,878 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e1210bd9445a7794dc508d - insert_scaler_model_into_mongo
+2025-03-24 17:09:12,279 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:09:12,496 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:08:27) - get_scaler_model_from_mongo
+2025-03-24 17:09:12,590 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:09:12,591 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpdtwtlo2m.keras - get_keras_model_from_mongo
+2025-03-24 17:11:00,249 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:11:00,443 - tf_lstm_train.py - INFO - Program starts execution! - model_training
+2025-03-24 17:11:00,496 - data_cleaning.py - INFO - 开始清洗:训练集…… - cleaning
+2025-03-24 17:11:00,506 - data_cleaning.py - INFO - 列清洗:清洗的列有:{'HubDireciton', 'HubSpeed'} - data_column_cleaning
+2025-03-24 17:11:00,525 - data_cleaning.py - INFO - 行清洗:清洗的行数有:881,缺失的列有: - key_field_row_cleaning
+2025-03-24 17:11:00,536 - data_handler.py - INFO - 2022-05-05 23:45:00 ~ 2022-05-09 00:00:00 - missing_time_splite
+2025-03-24 17:11:00,537 - data_handler.py - INFO - 缺失点数:288.0 - missing_time_splite
+2025-03-24 17:11:00,570 - data_handler.py - INFO - 2022-06-25 07:45:00 ~ 2022-06-25 08:15:00 - missing_time_splite
+2025-03-24 17:11:00,571 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 17:11:00,571 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 17:11:00,572 - data_handler.py - INFO - 2022-06-27 06:45:00 ~ 2022-06-27 07:15:00 - missing_time_splite
+2025-03-24 17:11:00,572 - data_handler.py - INFO - 缺失点数:1.0 - missing_time_splite
+2025-03-24 17:11:00,572 - data_handler.py - INFO - 需要补值的点数:1.0 - missing_time_splite
+2025-03-24 17:11:00,576 - data_handler.py - INFO - 2022-07-01 06:30:00 ~ 2022-07-01 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,576 - data_handler.py - INFO - 缺失点数:68.0 - missing_time_splite
+2025-03-24 17:11:00,581 - data_handler.py - INFO - 2022-07-08 06:15:00 ~ 2022-07-08 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,581 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:11:00,583 - data_handler.py - INFO - 2022-07-09 06:15:00 ~ 2022-07-09 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,583 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:11:00,584 - data_handler.py - INFO - 2022-07-10 06:15:00 ~ 2022-07-10 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,584 - data_handler.py - INFO - 缺失点数:69.0 - missing_time_splite
+2025-03-24 17:11:00,585 - data_handler.py - INFO - 2022-07-11 06:00:00 ~ 2022-07-11 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,585 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:11:00,586 - data_handler.py - INFO - 2022-07-12 06:00:00 ~ 2022-07-12 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,586 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:11:00,588 - data_handler.py - INFO - 2022-07-13 06:00:00 ~ 2022-07-13 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,588 - data_handler.py - INFO - 缺失点数:70.0 - missing_time_splite
+2025-03-24 17:11:00,589 - data_handler.py - INFO - 2022-07-14 23:00:00 ~ 2022-07-14 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,589 - data_handler.py - INFO - 缺失点数:2.0 - missing_time_splite
+2025-03-24 17:11:00,589 - data_handler.py - INFO - 需要补值的点数:2.0 - missing_time_splite
+2025-03-24 17:11:00,603 - data_handler.py - INFO - 2022-08-01 20:00:00 ~ 2022-08-01 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,603 - data_handler.py - INFO - 缺失点数:14.0 - missing_time_splite
+2025-03-24 17:11:00,604 - data_handler.py - INFO - 2022-08-02 21:00:00 ~ 2022-08-02 23:45:00 - missing_time_splite
+2025-03-24 17:11:00,604 - data_handler.py - INFO - 缺失点数:10.0 - missing_time_splite
+2025-03-24 17:11:00,606 - data_handler.py - INFO - 2022-08-04 00:00:00 ~ 2022-08-04 23:15:00 - missing_time_splite
+2025-03-24 17:11:00,606 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:11:00,607 - data_handler.py - INFO - 2022-08-05 00:00:00 ~ 2022-08-05 23:15:00 - missing_time_splite
+2025-03-24 17:11:00,607 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:11:00,608 - data_handler.py - INFO - 2022-08-06 00:00:00 ~ 2022-08-06 23:15:00 - missing_time_splite
+2025-03-24 17:11:00,608 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:11:00,609 - data_handler.py - INFO - 2022-08-07 00:00:00 ~ 2022-08-07 23:15:00 - missing_time_splite
+2025-03-24 17:11:00,609 - data_handler.py - INFO - 缺失点数:92.0 - missing_time_splite
+2025-03-24 17:11:00,610 - data_handler.py - INFO - 数据总数:8207, 时序缺失的间隔:3, 其中,较长的时间间隔:14 - missing_time_splite
+2025-03-24 17:11:00,610 - data_handler.py - INFO - 需要补值的总点数:4.0 - missing_time_splite
+2025-03-24 17:11:00,611 - data_handler.py - INFO - 再次测算,需要插值的总点数为:4.0 - fill_train_data
+2025-03-24 17:11:00,613 - data_handler.py - INFO - 2022-05-02 08:00:00 ~ 2022-05-05 23:45:00 有 352 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,617 - data_handler.py - INFO - 2022-05-09 00:00:00 ~ 2022-07-01 06:30:00 有 5115 个点, 填补 2 个点. - data_fill
+2025-03-24 17:11:00,619 - data_handler.py - INFO - 2022-07-01 23:45:00 ~ 2022-07-08 06:15:00 有 603 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,620 - data_handler.py - INFO - 2022-07-08 23:45:00 ~ 2022-07-09 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,621 - data_handler.py - INFO - 2022-07-09 23:45:00 ~ 2022-07-10 06:15:00 有 27 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,622 - data_handler.py - INFO - 2022-07-10 23:45:00 ~ 2022-07-11 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,623 - data_handler.py - INFO - 2022-07-11 23:45:00 ~ 2022-07-12 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,624 - data_handler.py - INFO - 2022-07-12 23:45:00 ~ 2022-07-13 06:00:00 有 26 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,625 - data_handler.py - INFO - 2022-07-13 23:45:00 ~ 2022-08-01 20:00:00 有 1810 个点, 填补 2 个点. - data_fill
+2025-03-24 17:11:00,627 - data_handler.py - INFO - 2022-08-01 23:45:00 ~ 2022-08-02 21:00:00 有 86 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,628 - data_handler.py - INFO - 2022-08-02 23:45:00 ~ 2022-08-04 00:00:00 有 98 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,629 - data_handler.py - INFO - 2022-08-04 23:15:00 ~ 2022-08-05 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,630 - data_handler.py - INFO - 2022-08-05 23:15:00 ~ 2022-08-06 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,631 - data_handler.py - INFO - 2022-08-06 23:15:00 ~ 2022-08-07 00:00:00 有 4 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,632 - data_handler.py - INFO - 2022-08-07 23:15:00 ~ 2022-08-07 23:45:00 有 3 个点, 填补 0 个点. - data_fill
+2025-03-24 17:11:00,632 - data_handler.py - INFO - 训练集分成了15段,实际一共补值4点 - data_fill
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-不满足time_step - get_train_data
+2025-03-24 17:11:03,098 - data_handler.py - INFO - 特征处理-训练数据-无法进行最小分割 - get_train_data
+2025-03-24 17:11:03,294 - dbmg.py - INFO - ⚠️ 未找到模型 'fmi' 的有效记录 - get_keras_model_from_mongo
+2025-03-24 17:11:03,295 - tf_lstm.py - INFO - 加强训练加载模型权重失败:('cannot unpack non-iterable NoneType object',) - train_init
+2025-03-24 17:11:10,984 - tf_lstm.py - INFO - -----模型训练经过29轮迭代----- - training
+2025-03-24 17:11:10,985 - tf_lstm.py - INFO - 训练集损失函数为:[1.0187  0.50769 0.4003  0.34891 0.31975 0.30011 0.2885  0.28014 0.27268
+ 0.26722 0.26358 0.26146 0.25936 0.25838 0.25643 0.25476 0.25288 0.25224
+ 0.25059 0.2489  0.24688 0.24658 0.24647 0.2449  0.24442 0.24386 0.24395
+ 0.24276 0.243  ] - training
+2025-03-24 17:11:10,985 - tf_lstm.py - INFO - 验证集损失函数为:[0.64388 0.46151 0.40515 0.37103 0.35298 0.33836 0.32787 0.31869 0.3132
+ 0.30919 0.30599 0.30453 0.30324 0.30072 0.29934 0.29613 0.29618 0.29528
+ 0.29365 0.29378 0.30024 0.30205 0.29393 0.29537 0.29821 0.30199 0.30141
+ 0.3054  0.30375] - training
+2025-03-24 17:11:11,026 - dbmg.py - INFO - ✅ 模型 fmi 保存成功 | 文档ID: 67e121af8347b570c0051984 - insert_trained_model_into_mongo
+2025-03-24 17:11:11,046 - dbmg.py - INFO - ✅ 缩放器 fmi 保存成功 | 文档ID: 67e121af8347b570c0051986 - insert_scaler_model_into_mongo
+2025-03-24 17:14:35,654 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:14:35,856 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:14:35,953 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:14:35,954 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpvvvszb77.keras - get_keras_model_from_mongo
+2025-03-24 17:30:37,721 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:31:04,516 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:36:19,276 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:36:45,665 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:37:32,496 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:37:38,183 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:37:44,340 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:37:45,648 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpxnt3vn8d.keras - get_keras_model_from_mongo
+2025-03-24 17:48:35,080 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:48:39,970 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:48:44,344 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:48:46,276 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpc5qqpto_.keras - get_keras_model_from_mongo
+2025-03-24 17:49:12,303 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:49:16,406 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:49:24,029 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:49:31,117 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp3dcxyg51.keras - get_keras_model_from_mongo
+2025-03-24 17:50:55,775 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:50:59,392 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:51:03,446 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:51:04,445 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmpr1zyclo4.keras - get_keras_model_from_mongo
+2025-03-24 17:51:56,991 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:52:00,812 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:52:05,476 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:52:06,146 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp9z7uk0pw.keras - get_keras_model_from_mongo
+2025-03-24 17:52:43,974 - module_wrapper.py - WARNING - From E:\compete\app\model\losses.py:10: The name tf.set_random_seed is deprecated. Please use tf.compat.v1.set_random_seed instead.
+ - _tfmw_add_deprecation_warning
+2025-03-24 17:52:44,193 - dbmg.py - INFO - ✅ 成功加载 fmi 的缩放器 (版本时间: 2025-03-24 17:11:10) - get_scaler_model_from_mongo
+2025-03-24 17:52:44,285 - dbmg.py - INFO - fmi 模型成功从 MongoDB 加载! - get_keras_model_from_mongo
+2025-03-24 17:52:44,285 - dbmg.py - INFO - 🧹 已清理临时文件: C:\Users\ADMINI~1\AppData\Local\Temp\tmp94emdn_b.keras - get_keras_model_from_mongo
+2025-03-24 17:52:44,582 - tf_lstm.py - INFO - 执行预测方法 - predict

+ 11 - 6
app/model/tf_lstm_train.py

@@ -8,6 +8,9 @@ import json, os
 import numpy as np
 import traceback
 import logging
+
+from pyexpat import features
+
 from app.common.logs import args
 from app.common.data_handler import DataHandler, write_number_to_file
 import time
@@ -57,12 +60,14 @@ def model_training(train_data, input_file, cap):
         # 更新算法状态:1. 启动成功
         write_number_to_file(os.path.join(output_file, status_file), 1, 1, 'rewrite')
         # ------------ 组装模型数据 ------------
-        args['params'] = json.dumps(args)
-        args['descr'] = '南网竞赛-{}'.format(farm_id)
-        args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
-        args['model_table'] += farm_id
-        args['scaler_table'] += farm_id
-        args['features'] = ','.join(dh.opt.features)
+        args['Model']['features'] = ','.join(dh.opt.features)
+        args.update({
+            'params': json.dumps(args),
+            'descr': f'南网竞赛-{farm_id}',
+            'gen_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()),
+            'model_table': args['model_table'] + farm_id,
+            'scaler_table': args['scaler_table'] + farm_id
+        })
         mgUtils.insert_trained_model_into_mongo(ts_model, args)
         mgUtils.insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
         # 更新算法状态:正常结束

+ 672 - 672
app/predict/data/DQYC/20220807/2365/OUT/DQYC_OUT_PREDICT_POWER.txt

@@ -1,673 +1,673 @@
 PlantID Datetime Power
-2365 "2022-08-08 00:00:00" 11.48
-2365 "2022-08-08 00:15:00" 11.58
-2365 "2022-08-08 00:30:00" 11.42
-2365 "2022-08-08 00:45:00" 12.1
-2365 "2022-08-08 01:00:00" 11.77
-2365 "2022-08-08 01:15:00" 12.47
-2365 "2022-08-08 01:30:00" 11.26
-2365 "2022-08-08 01:45:00" 12.04
-2365 "2022-08-08 02:00:00" 12.06
-2365 "2022-08-08 02:15:00" 11.15
-2365 "2022-08-08 02:30:00" 11.42
-2365 "2022-08-08 02:45:00" 11.37
-2365 "2022-08-08 03:00:00" 11.84
-2365 "2022-08-08 03:15:00" 11.24
-2365 "2022-08-08 03:30:00" 12.24
-2365 "2022-08-08 03:45:00" 11.4
-2365 "2022-08-08 04:00:00" 11.48
-2365 "2022-08-08 04:15:00" 11.58
-2365 "2022-08-08 04:30:00" 11.42
-2365 "2022-08-08 04:45:00" 12.1
-2365 "2022-08-08 05:00:00" 11.77
-2365 "2022-08-08 05:15:00" 12.47
-2365 "2022-08-08 05:30:00" 11.26
-2365 "2022-08-08 05:45:00" 12.04
-2365 "2022-08-08 06:00:00" 12.06
-2365 "2022-08-08 06:15:00" 11.15
-2365 "2022-08-08 06:30:00" 11.41
-2365 "2022-08-08 06:45:00" 11.37
-2365 "2022-08-08 07:00:00" 11.84
-2365 "2022-08-08 07:15:00" 11.24
-2365 "2022-08-08 07:30:00" 12.24
-2365 "2022-08-08 07:45:00" 11.4
-2365 "2022-08-08 08:00:00" 11.48
-2365 "2022-08-08 08:15:00" 11.58
-2365 "2022-08-08 08:30:00" 11.42
-2365 "2022-08-08 08:45:00" 12.1
-2365 "2022-08-08 09:00:00" 11.77
-2365 "2022-08-08 09:15:00" 12.47
-2365 "2022-08-08 09:30:00" 11.26
-2365 "2022-08-08 09:45:00" 12.04
-2365 "2022-08-08 10:00:00" 12.06
-2365 "2022-08-08 10:15:00" 11.15
-2365 "2022-08-08 10:30:00" 11.41
-2365 "2022-08-08 10:45:00" 11.37
-2365 "2022-08-08 11:00:00" 11.84
-2365 "2022-08-08 11:15:00" 11.24
-2365 "2022-08-08 11:30:00" 12.24
-2365 "2022-08-08 11:45:00" 11.4
-2365 "2022-08-08 12:00:00" 11.48
-2365 "2022-08-08 12:15:00" 11.58
-2365 "2022-08-08 12:30:00" 11.42
-2365 "2022-08-08 12:45:00" 12.1
-2365 "2022-08-08 13:00:00" 11.77
-2365 "2022-08-08 13:15:00" 12.47
-2365 "2022-08-08 13:30:00" 11.26
-2365 "2022-08-08 13:45:00" 12.04
-2365 "2022-08-08 14:00:00" 12.06
-2365 "2022-08-08 14:15:00" 11.15
-2365 "2022-08-08 14:30:00" 11.42
-2365 "2022-08-08 14:45:00" 11.37
-2365 "2022-08-08 15:00:00" 11.84
-2365 "2022-08-08 15:15:00" 11.24
-2365 "2022-08-08 15:30:00" 12.24
-2365 "2022-08-08 15:45:00" 11.4
-2365 "2022-08-08 16:00:00" 11.48
-2365 "2022-08-08 16:15:00" 11.58
-2365 "2022-08-08 16:30:00" 11.42
-2365 "2022-08-08 16:45:00" 12.1
-2365 "2022-08-08 17:00:00" 11.77
-2365 "2022-08-08 17:15:00" 12.47
-2365 "2022-08-08 17:30:00" 11.26
-2365 "2022-08-08 17:45:00" 12.04
-2365 "2022-08-08 18:00:00" 12.06
-2365 "2022-08-08 18:15:00" 11.15
-2365 "2022-08-08 18:30:00" 11.42
-2365 "2022-08-08 18:45:00" 11.37
-2365 "2022-08-08 19:00:00" 11.84
-2365 "2022-08-08 19:15:00" 11.24
-2365 "2022-08-08 19:30:00" 12.24
-2365 "2022-08-08 19:45:00" 11.4
-2365 "2022-08-08 20:00:00" 11.48
-2365 "2022-08-08 20:15:00" 11.58
-2365 "2022-08-08 20:30:00" 11.42
-2365 "2022-08-08 20:45:00" 12.1
-2365 "2022-08-08 21:00:00" 11.77
-2365 "2022-08-08 21:15:00" 12.47
-2365 "2022-08-08 21:30:00" 11.26
-2365 "2022-08-08 21:45:00" 12.04
-2365 "2022-08-08 22:00:00" 12.06
-2365 "2022-08-08 22:15:00" 11.15
-2365 "2022-08-08 22:30:00" 11.41
-2365 "2022-08-08 22:45:00" 11.37
-2365 "2022-08-08 23:00:00" 11.84
-2365 "2022-08-08 23:15:00" 11.24
-2365 "2022-08-08 23:30:00" 12.24
-2365 "2022-08-08 23:45:00" 11.4
-2365 "2022-08-09 00:00:00" 11.48
-2365 "2022-08-09 00:15:00" 11.58
-2365 "2022-08-09 00:30:00" 11.42
-2365 "2022-08-09 00:45:00" 12.1
-2365 "2022-08-09 01:00:00" 11.77
-2365 "2022-08-09 01:15:00" 12.47
-2365 "2022-08-09 01:30:00" 11.26
-2365 "2022-08-09 01:45:00" 12.04
-2365 "2022-08-09 02:00:00" 12.06
-2365 "2022-08-09 02:15:00" 11.15
-2365 "2022-08-09 02:30:00" 11.42
-2365 "2022-08-09 02:45:00" 11.37
-2365 "2022-08-09 03:00:00" 11.84
-2365 "2022-08-09 03:15:00" 11.24
-2365 "2022-08-09 03:30:00" 12.24
-2365 "2022-08-09 03:45:00" 11.4
-2365 "2022-08-09 04:00:00" 11.48
-2365 "2022-08-09 04:15:00" 11.58
-2365 "2022-08-09 04:30:00" 11.42
-2365 "2022-08-09 04:45:00" 12.1
-2365 "2022-08-09 05:00:00" 11.77
-2365 "2022-08-09 05:15:00" 12.47
-2365 "2022-08-09 05:30:00" 11.26
-2365 "2022-08-09 05:45:00" 12.04
-2365 "2022-08-09 06:00:00" 12.06
-2365 "2022-08-09 06:15:00" 11.15
-2365 "2022-08-09 06:30:00" 11.42
-2365 "2022-08-09 06:45:00" 11.37
-2365 "2022-08-09 07:00:00" 11.84
-2365 "2022-08-09 07:15:00" 11.24
-2365 "2022-08-09 07:30:00" 12.24
-2365 "2022-08-09 07:45:00" 11.4
-2365 "2022-08-09 08:00:00" 11.48
-2365 "2022-08-09 08:15:00" 11.58
-2365 "2022-08-09 08:30:00" 11.42
-2365 "2022-08-09 08:45:00" 12.1
-2365 "2022-08-09 09:00:00" 11.77
-2365 "2022-08-09 09:15:00" 12.47
-2365 "2022-08-09 09:30:00" 11.26
-2365 "2022-08-09 09:45:00" 12.04
-2365 "2022-08-09 10:00:00" 12.06
-2365 "2022-08-09 10:15:00" 11.15
-2365 "2022-08-09 10:30:00" 11.42
-2365 "2022-08-09 10:45:00" 11.37
-2365 "2022-08-09 11:00:00" 11.84
-2365 "2022-08-09 11:15:00" 11.24
-2365 "2022-08-09 11:30:00" 12.24
-2365 "2022-08-09 11:45:00" 11.4
-2365 "2022-08-09 12:00:00" 11.48
-2365 "2022-08-09 12:15:00" 11.58
-2365 "2022-08-09 12:30:00" 11.42
-2365 "2022-08-09 12:45:00" 12.1
-2365 "2022-08-09 13:00:00" 11.77
-2365 "2022-08-09 13:15:00" 12.47
-2365 "2022-08-09 13:30:00" 11.26
-2365 "2022-08-09 13:45:00" 12.04
-2365 "2022-08-09 14:00:00" 12.06
-2365 "2022-08-09 14:15:00" 11.15
-2365 "2022-08-09 14:30:00" 11.42
-2365 "2022-08-09 14:45:00" 11.37
-2365 "2022-08-09 15:00:00" 11.84
-2365 "2022-08-09 15:15:00" 11.24
-2365 "2022-08-09 15:30:00" 12.24
-2365 "2022-08-09 15:45:00" 11.4
-2365 "2022-08-09 16:00:00" 11.48
-2365 "2022-08-09 16:15:00" 11.58
-2365 "2022-08-09 16:30:00" 11.42
-2365 "2022-08-09 16:45:00" 12.1
-2365 "2022-08-09 17:00:00" 11.77
-2365 "2022-08-09 17:15:00" 12.47
-2365 "2022-08-09 17:30:00" 11.26
-2365 "2022-08-09 17:45:00" 12.04
-2365 "2022-08-09 18:00:00" 12.06
-2365 "2022-08-09 18:15:00" 11.15
-2365 "2022-08-09 18:30:00" 11.42
-2365 "2022-08-09 18:45:00" 11.37
-2365 "2022-08-09 19:00:00" 11.84
-2365 "2022-08-09 19:15:00" 11.24
-2365 "2022-08-09 19:30:00" 12.24
-2365 "2022-08-09 19:45:00" 11.4
-2365 "2022-08-09 20:00:00" 11.48
-2365 "2022-08-09 20:15:00" 11.58
-2365 "2022-08-09 20:30:00" 11.42
-2365 "2022-08-09 20:45:00" 12.1
-2365 "2022-08-09 21:00:00" 11.77
-2365 "2022-08-09 21:15:00" 12.47
-2365 "2022-08-09 21:30:00" 11.26
-2365 "2022-08-09 21:45:00" 12.04
-2365 "2022-08-09 22:00:00" 12.06
-2365 "2022-08-09 22:15:00" 11.15
-2365 "2022-08-09 22:30:00" 11.42
-2365 "2022-08-09 22:45:00" 11.37
-2365 "2022-08-09 23:00:00" 11.84
-2365 "2022-08-09 23:15:00" 11.24
-2365 "2022-08-09 23:30:00" 12.24
-2365 "2022-08-09 23:45:00" 11.4
-2365 "2022-08-10 00:00:00" 11.48
-2365 "2022-08-10 00:15:00" 11.58
-2365 "2022-08-10 00:30:00" 11.42
-2365 "2022-08-10 00:45:00" 12.1
-2365 "2022-08-10 01:00:00" 11.77
-2365 "2022-08-10 01:15:00" 12.47
-2365 "2022-08-10 01:30:00" 11.26
-2365 "2022-08-10 01:45:00" 12.04
-2365 "2022-08-10 02:00:00" 12.06
-2365 "2022-08-10 02:15:00" 11.15
-2365 "2022-08-10 02:30:00" 11.42
-2365 "2022-08-10 02:45:00" 11.37
-2365 "2022-08-10 03:00:00" 11.84
-2365 "2022-08-10 03:15:00" 11.24
-2365 "2022-08-10 03:30:00" 12.24
-2365 "2022-08-10 03:45:00" 11.4
-2365 "2022-08-10 04:00:00" 11.48
-2365 "2022-08-10 04:15:00" 11.58
-2365 "2022-08-10 04:30:00" 11.42
-2365 "2022-08-10 04:45:00" 12.1
-2365 "2022-08-10 05:00:00" 11.77
-2365 "2022-08-10 05:15:00" 12.47
-2365 "2022-08-10 05:30:00" 11.26
-2365 "2022-08-10 05:45:00" 12.04
-2365 "2022-08-10 06:00:00" 12.06
-2365 "2022-08-10 06:15:00" 11.15
-2365 "2022-08-10 06:30:00" 11.42
-2365 "2022-08-10 06:45:00" 11.37
-2365 "2022-08-10 07:00:00" 11.84
-2365 "2022-08-10 07:15:00" 11.24
-2365 "2022-08-10 07:30:00" 12.24
-2365 "2022-08-10 07:45:00" 11.4
-2365 "2022-08-10 08:00:00" 11.48
-2365 "2022-08-10 08:15:00" 11.58
-2365 "2022-08-10 08:30:00" 11.42
-2365 "2022-08-10 08:45:00" 12.1
-2365 "2022-08-10 09:00:00" 11.77
-2365 "2022-08-10 09:15:00" 12.47
-2365 "2022-08-10 09:30:00" 11.26
-2365 "2022-08-10 09:45:00" 12.04
-2365 "2022-08-10 10:00:00" 12.06
-2365 "2022-08-10 10:15:00" 11.15
-2365 "2022-08-10 10:30:00" 11.42
-2365 "2022-08-10 10:45:00" 11.37
-2365 "2022-08-10 11:00:00" 11.84
-2365 "2022-08-10 11:15:00" 11.24
-2365 "2022-08-10 11:30:00" 12.24
-2365 "2022-08-10 11:45:00" 11.4
-2365 "2022-08-10 12:00:00" 11.48
-2365 "2022-08-10 12:15:00" 11.58
-2365 "2022-08-10 12:30:00" 11.42
-2365 "2022-08-10 12:45:00" 12.1
-2365 "2022-08-10 13:00:00" 11.77
-2365 "2022-08-10 13:15:00" 12.47
-2365 "2022-08-10 13:30:00" 11.26
-2365 "2022-08-10 13:45:00" 12.04
-2365 "2022-08-10 14:00:00" 12.06
-2365 "2022-08-10 14:15:00" 11.15
-2365 "2022-08-10 14:30:00" 11.42
-2365 "2022-08-10 14:45:00" 11.37
-2365 "2022-08-10 15:00:00" 11.84
-2365 "2022-08-10 15:15:00" 11.24
-2365 "2022-08-10 15:30:00" 12.24
-2365 "2022-08-10 15:45:00" 11.4
-2365 "2022-08-10 16:00:00" 11.48
-2365 "2022-08-10 16:15:00" 11.58
-2365 "2022-08-10 16:30:00" 11.42
-2365 "2022-08-10 16:45:00" 12.1
-2365 "2022-08-10 17:00:00" 11.77
-2365 "2022-08-10 17:15:00" 12.47
-2365 "2022-08-10 17:30:00" 11.26
-2365 "2022-08-10 17:45:00" 12.04
-2365 "2022-08-10 18:00:00" 12.06
-2365 "2022-08-10 18:15:00" 11.15
-2365 "2022-08-10 18:30:00" 11.42
-2365 "2022-08-10 18:45:00" 11.37
-2365 "2022-08-10 19:00:00" 11.84
-2365 "2022-08-10 19:15:00" 11.24
-2365 "2022-08-10 19:30:00" 12.24
-2365 "2022-08-10 19:45:00" 11.4
-2365 "2022-08-10 20:00:00" 11.48
-2365 "2022-08-10 20:15:00" 11.58
-2365 "2022-08-10 20:30:00" 11.42
-2365 "2022-08-10 20:45:00" 12.1
-2365 "2022-08-10 21:00:00" 11.77
-2365 "2022-08-10 21:15:00" 12.47
-2365 "2022-08-10 21:30:00" 11.26
-2365 "2022-08-10 21:45:00" 12.04
-2365 "2022-08-10 22:00:00" 12.06
-2365 "2022-08-10 22:15:00" 11.15
-2365 "2022-08-10 22:30:00" 11.42
-2365 "2022-08-10 22:45:00" 11.37
-2365 "2022-08-10 23:00:00" 11.84
-2365 "2022-08-10 23:15:00" 11.24
-2365 "2022-08-10 23:30:00" 12.24
-2365 "2022-08-10 23:45:00" 11.4
-2365 "2022-08-11 00:00:00" 11.48
-2365 "2022-08-11 00:15:00" 11.58
-2365 "2022-08-11 00:30:00" 11.42
-2365 "2022-08-11 00:45:00" 12.1
-2365 "2022-08-11 01:00:00" 11.77
-2365 "2022-08-11 01:15:00" 12.47
-2365 "2022-08-11 01:30:00" 11.26
-2365 "2022-08-11 01:45:00" 12.04
-2365 "2022-08-11 02:00:00" 12.06
-2365 "2022-08-11 02:15:00" 11.15
-2365 "2022-08-11 02:30:00" 11.42
-2365 "2022-08-11 02:45:00" 11.37
-2365 "2022-08-11 03:00:00" 11.84
-2365 "2022-08-11 03:15:00" 11.24
-2365 "2022-08-11 03:30:00" 12.24
-2365 "2022-08-11 03:45:00" 11.4
-2365 "2022-08-11 04:00:00" 11.48
-2365 "2022-08-11 04:15:00" 11.58
-2365 "2022-08-11 04:30:00" 11.42
-2365 "2022-08-11 04:45:00" 12.1
-2365 "2022-08-11 05:00:00" 11.77
-2365 "2022-08-11 05:15:00" 12.47
-2365 "2022-08-11 05:30:00" 11.26
-2365 "2022-08-11 05:45:00" 12.04
-2365 "2022-08-11 06:00:00" 12.06
-2365 "2022-08-11 06:15:00" 11.15
-2365 "2022-08-11 06:30:00" 11.42
-2365 "2022-08-11 06:45:00" 11.37
-2365 "2022-08-11 07:00:00" 11.84
-2365 "2022-08-11 07:15:00" 11.24
-2365 "2022-08-11 07:30:00" 12.24
-2365 "2022-08-11 07:45:00" 11.4
-2365 "2022-08-11 08:00:00" 11.48
-2365 "2022-08-11 08:15:00" 11.58
-2365 "2022-08-11 08:30:00" 11.42
-2365 "2022-08-11 08:45:00" 12.1
-2365 "2022-08-11 09:00:00" 11.77
-2365 "2022-08-11 09:15:00" 12.47
-2365 "2022-08-11 09:30:00" 11.26
-2365 "2022-08-11 09:45:00" 12.04
-2365 "2022-08-11 10:00:00" 12.06
-2365 "2022-08-11 10:15:00" 11.15
-2365 "2022-08-11 10:30:00" 11.42
-2365 "2022-08-11 10:45:00" 11.37
-2365 "2022-08-11 11:00:00" 11.84
-2365 "2022-08-11 11:15:00" 11.24
-2365 "2022-08-11 11:30:00" 12.24
-2365 "2022-08-11 11:45:00" 11.4
-2365 "2022-08-11 12:00:00" 11.48
-2365 "2022-08-11 12:15:00" 11.58
-2365 "2022-08-11 12:30:00" 11.42
-2365 "2022-08-11 12:45:00" 12.1
-2365 "2022-08-11 13:00:00" 11.77
-2365 "2022-08-11 13:15:00" 12.47
-2365 "2022-08-11 13:30:00" 11.26
-2365 "2022-08-11 13:45:00" 12.04
-2365 "2022-08-11 14:00:00" 12.06
-2365 "2022-08-11 14:15:00" 11.15
-2365 "2022-08-11 14:30:00" 11.42
-2365 "2022-08-11 14:45:00" 11.37
-2365 "2022-08-11 15:00:00" 11.84
-2365 "2022-08-11 15:15:00" 11.24
-2365 "2022-08-11 15:30:00" 12.24
-2365 "2022-08-11 15:45:00" 11.4
-2365 "2022-08-11 16:00:00" 11.48
-2365 "2022-08-11 16:15:00" 11.58
-2365 "2022-08-11 16:30:00" 11.42
-2365 "2022-08-11 16:45:00" 12.1
-2365 "2022-08-11 17:00:00" 11.77
-2365 "2022-08-11 17:15:00" 12.47
-2365 "2022-08-11 17:30:00" 11.26
-2365 "2022-08-11 17:45:00" 12.04
-2365 "2022-08-11 18:00:00" 12.06
-2365 "2022-08-11 18:15:00" 11.15
-2365 "2022-08-11 18:30:00" 11.42
-2365 "2022-08-11 18:45:00" 11.37
-2365 "2022-08-11 19:00:00" 11.84
-2365 "2022-08-11 19:15:00" 11.24
-2365 "2022-08-11 19:30:00" 12.24
-2365 "2022-08-11 19:45:00" 11.4
-2365 "2022-08-11 20:00:00" 11.48
-2365 "2022-08-11 20:15:00" 11.58
-2365 "2022-08-11 20:30:00" 11.42
-2365 "2022-08-11 20:45:00" 12.1
-2365 "2022-08-11 21:00:00" 11.77
-2365 "2022-08-11 21:15:00" 12.47
-2365 "2022-08-11 21:30:00" 11.26
-2365 "2022-08-11 21:45:00" 12.04
-2365 "2022-08-11 22:00:00" 12.06
-2365 "2022-08-11 22:15:00" 11.15
-2365 "2022-08-11 22:30:00" 11.41
-2365 "2022-08-11 22:45:00" 11.37
-2365 "2022-08-11 23:00:00" 11.84
-2365 "2022-08-11 23:15:00" 11.24
-2365 "2022-08-11 23:30:00" 12.24
-2365 "2022-08-11 23:45:00" 11.4
-2365 "2022-08-12 00:00:00" 11.48
-2365 "2022-08-12 00:15:00" 11.58
-2365 "2022-08-12 00:30:00" 11.42
-2365 "2022-08-12 00:45:00" 12.1
-2365 "2022-08-12 01:00:00" 11.77
-2365 "2022-08-12 01:15:00" 12.47
-2365 "2022-08-12 01:30:00" 11.26
-2365 "2022-08-12 01:45:00" 12.04
-2365 "2022-08-12 02:00:00" 12.06
-2365 "2022-08-12 02:15:00" 11.15
-2365 "2022-08-12 02:30:00" 11.41
-2365 "2022-08-12 02:45:00" 11.37
-2365 "2022-08-12 03:00:00" 11.84
-2365 "2022-08-12 03:15:00" 11.24
-2365 "2022-08-12 03:30:00" 12.24
-2365 "2022-08-12 03:45:00" 11.4
-2365 "2022-08-12 04:00:00" 11.48
-2365 "2022-08-12 04:15:00" 11.58
-2365 "2022-08-12 04:30:00" 11.42
-2365 "2022-08-12 04:45:00" 12.1
-2365 "2022-08-12 05:00:00" 11.77
-2365 "2022-08-12 05:15:00" 12.47
-2365 "2022-08-12 05:30:00" 11.26
-2365 "2022-08-12 05:45:00" 12.04
-2365 "2022-08-12 06:00:00" 12.06
-2365 "2022-08-12 06:15:00" 11.15
-2365 "2022-08-12 06:30:00" 11.41
-2365 "2022-08-12 06:45:00" 11.37
-2365 "2022-08-12 07:00:00" 11.84
-2365 "2022-08-12 07:15:00" 11.24
-2365 "2022-08-12 07:30:00" 12.24
-2365 "2022-08-12 07:45:00" 11.4
-2365 "2022-08-12 08:00:00" 11.48
-2365 "2022-08-12 08:15:00" 11.58
-2365 "2022-08-12 08:30:00" 11.42
-2365 "2022-08-12 08:45:00" 12.1
-2365 "2022-08-12 09:00:00" 11.77
-2365 "2022-08-12 09:15:00" 12.47
-2365 "2022-08-12 09:30:00" 11.26
-2365 "2022-08-12 09:45:00" 12.04
-2365 "2022-08-12 10:00:00" 12.06
-2365 "2022-08-12 10:15:00" 11.15
-2365 "2022-08-12 10:30:00" 11.41
-2365 "2022-08-12 10:45:00" 11.37
-2365 "2022-08-12 11:00:00" 11.84
-2365 "2022-08-12 11:15:00" 11.24
-2365 "2022-08-12 11:30:00" 12.24
-2365 "2022-08-12 11:45:00" 11.4
-2365 "2022-08-12 12:00:00" 11.48
-2365 "2022-08-12 12:15:00" 11.58
-2365 "2022-08-12 12:30:00" 11.42
-2365 "2022-08-12 12:45:00" 12.1
-2365 "2022-08-12 13:00:00" 11.77
-2365 "2022-08-12 13:15:00" 12.47
-2365 "2022-08-12 13:30:00" 11.26
-2365 "2022-08-12 13:45:00" 12.04
-2365 "2022-08-12 14:00:00" 12.06
-2365 "2022-08-12 14:15:00" 11.15
-2365 "2022-08-12 14:30:00" 11.42
-2365 "2022-08-12 14:45:00" 11.37
-2365 "2022-08-12 15:00:00" 11.84
-2365 "2022-08-12 15:15:00" 11.24
-2365 "2022-08-12 15:30:00" 12.24
-2365 "2022-08-12 15:45:00" 11.4
-2365 "2022-08-12 16:00:00" 11.48
-2365 "2022-08-12 16:15:00" 11.58
-2365 "2022-08-12 16:30:00" 11.42
-2365 "2022-08-12 16:45:00" 12.1
-2365 "2022-08-12 17:00:00" 11.77
-2365 "2022-08-12 17:15:00" 12.47
-2365 "2022-08-12 17:30:00" 11.26
-2365 "2022-08-12 17:45:00" 12.04
-2365 "2022-08-12 18:00:00" 12.06
-2365 "2022-08-12 18:15:00" 11.15
-2365 "2022-08-12 18:30:00" 11.42
-2365 "2022-08-12 18:45:00" 11.37
-2365 "2022-08-12 19:00:00" 11.84
-2365 "2022-08-12 19:15:00" 11.24
-2365 "2022-08-12 19:30:00" 12.24
-2365 "2022-08-12 19:45:00" 11.4
-2365 "2022-08-12 20:00:00" 11.48
-2365 "2022-08-12 20:15:00" 11.58
-2365 "2022-08-12 20:30:00" 11.42
-2365 "2022-08-12 20:45:00" 12.1
-2365 "2022-08-12 21:00:00" 11.77
-2365 "2022-08-12 21:15:00" 12.47
-2365 "2022-08-12 21:30:00" 11.26
-2365 "2022-08-12 21:45:00" 12.04
-2365 "2022-08-12 22:00:00" 12.06
-2365 "2022-08-12 22:15:00" 11.15
-2365 "2022-08-12 22:30:00" 11.41
-2365 "2022-08-12 22:45:00" 11.37
-2365 "2022-08-12 23:00:00" 11.84
-2365 "2022-08-12 23:15:00" 11.24
-2365 "2022-08-12 23:30:00" 12.24
-2365 "2022-08-12 23:45:00" 11.4
-2365 "2022-08-13 00:00:00" 11.48
-2365 "2022-08-13 00:15:00" 11.58
-2365 "2022-08-13 00:30:00" 11.42
-2365 "2022-08-13 00:45:00" 12.1
-2365 "2022-08-13 01:00:00" 11.77
-2365 "2022-08-13 01:15:00" 12.47
-2365 "2022-08-13 01:30:00" 11.26
-2365 "2022-08-13 01:45:00" 12.04
-2365 "2022-08-13 02:00:00" 12.06
-2365 "2022-08-13 02:15:00" 11.15
-2365 "2022-08-13 02:30:00" 11.41
-2365 "2022-08-13 02:45:00" 11.37
-2365 "2022-08-13 03:00:00" 11.84
-2365 "2022-08-13 03:15:00" 11.24
-2365 "2022-08-13 03:30:00" 12.24
-2365 "2022-08-13 03:45:00" 11.4
-2365 "2022-08-13 04:00:00" 11.48
-2365 "2022-08-13 04:15:00" 11.58
-2365 "2022-08-13 04:30:00" 11.42
-2365 "2022-08-13 04:45:00" 12.1
-2365 "2022-08-13 05:00:00" 11.77
-2365 "2022-08-13 05:15:00" 12.47
-2365 "2022-08-13 05:30:00" 11.26
-2365 "2022-08-13 05:45:00" 12.04
-2365 "2022-08-13 06:00:00" 12.06
-2365 "2022-08-13 06:15:00" 11.15
-2365 "2022-08-13 06:30:00" 11.41
-2365 "2022-08-13 06:45:00" 11.37
-2365 "2022-08-13 07:00:00" 11.84
-2365 "2022-08-13 07:15:00" 11.24
-2365 "2022-08-13 07:30:00" 12.24
-2365 "2022-08-13 07:45:00" 11.4
-2365 "2022-08-13 08:00:00" 11.48
-2365 "2022-08-13 08:15:00" 11.58
-2365 "2022-08-13 08:30:00" 11.42
-2365 "2022-08-13 08:45:00" 12.1
-2365 "2022-08-13 09:00:00" 11.77
-2365 "2022-08-13 09:15:00" 12.47
-2365 "2022-08-13 09:30:00" 11.26
-2365 "2022-08-13 09:45:00" 12.04
-2365 "2022-08-13 10:00:00" 12.06
-2365 "2022-08-13 10:15:00" 11.15
-2365 "2022-08-13 10:30:00" 11.41
-2365 "2022-08-13 10:45:00" 11.37
-2365 "2022-08-13 11:00:00" 11.84
-2365 "2022-08-13 11:15:00" 11.24
-2365 "2022-08-13 11:30:00" 12.24
-2365 "2022-08-13 11:45:00" 11.4
-2365 "2022-08-13 12:00:00" 11.48
-2365 "2022-08-13 12:15:00" 11.58
-2365 "2022-08-13 12:30:00" 11.42
-2365 "2022-08-13 12:45:00" 12.1
-2365 "2022-08-13 13:00:00" 11.77
-2365 "2022-08-13 13:15:00" 12.47
-2365 "2022-08-13 13:30:00" 11.26
-2365 "2022-08-13 13:45:00" 12.04
-2365 "2022-08-13 14:00:00" 12.06
-2365 "2022-08-13 14:15:00" 11.15
-2365 "2022-08-13 14:30:00" 11.42
-2365 "2022-08-13 14:45:00" 11.37
-2365 "2022-08-13 15:00:00" 11.84
-2365 "2022-08-13 15:15:00" 11.24
-2365 "2022-08-13 15:30:00" 12.24
-2365 "2022-08-13 15:45:00" 11.4
-2365 "2022-08-13 16:00:00" 11.48
-2365 "2022-08-13 16:15:00" 11.58
-2365 "2022-08-13 16:30:00" 11.42
-2365 "2022-08-13 16:45:00" 12.1
-2365 "2022-08-13 17:00:00" 11.77
-2365 "2022-08-13 17:15:00" 12.47
-2365 "2022-08-13 17:30:00" 11.26
-2365 "2022-08-13 17:45:00" 12.04
-2365 "2022-08-13 18:00:00" 12.06
-2365 "2022-08-13 18:15:00" 11.15
-2365 "2022-08-13 18:30:00" 11.42
-2365 "2022-08-13 18:45:00" 11.37
-2365 "2022-08-13 19:00:00" 11.84
-2365 "2022-08-13 19:15:00" 11.24
-2365 "2022-08-13 19:30:00" 12.24
-2365 "2022-08-13 19:45:00" 11.4
-2365 "2022-08-13 20:00:00" 11.48
-2365 "2022-08-13 20:15:00" 11.58
-2365 "2022-08-13 20:30:00" 11.42
-2365 "2022-08-13 20:45:00" 12.1
-2365 "2022-08-13 21:00:00" 11.77
-2365 "2022-08-13 21:15:00" 12.47
-2365 "2022-08-13 21:30:00" 11.26
-2365 "2022-08-13 21:45:00" 12.04
-2365 "2022-08-13 22:00:00" 12.06
-2365 "2022-08-13 22:15:00" 11.15
-2365 "2022-08-13 22:30:00" 11.41
-2365 "2022-08-13 22:45:00" 11.37
-2365 "2022-08-13 23:00:00" 11.84
-2365 "2022-08-13 23:15:00" 11.24
-2365 "2022-08-13 23:30:00" 12.24
-2365 "2022-08-13 23:45:00" 11.4
-2365 "2022-08-14 00:00:00" 11.48
-2365 "2022-08-14 00:15:00" 11.58
-2365 "2022-08-14 00:30:00" 11.42
-2365 "2022-08-14 00:45:00" 12.1
-2365 "2022-08-14 01:00:00" 11.77
-2365 "2022-08-14 01:15:00" 12.47
-2365 "2022-08-14 01:30:00" 11.26
-2365 "2022-08-14 01:45:00" 12.04
-2365 "2022-08-14 02:00:00" 12.06
-2365 "2022-08-14 02:15:00" 11.15
-2365 "2022-08-14 02:30:00" 11.42
-2365 "2022-08-14 02:45:00" 11.37
-2365 "2022-08-14 03:00:00" 11.84
-2365 "2022-08-14 03:15:00" 11.24
-2365 "2022-08-14 03:30:00" 12.24
-2365 "2022-08-14 03:45:00" 11.4
-2365 "2022-08-14 04:00:00" 11.48
-2365 "2022-08-14 04:15:00" 11.58
-2365 "2022-08-14 04:30:00" 11.42
-2365 "2022-08-14 04:45:00" 12.1
-2365 "2022-08-14 05:00:00" 11.77
-2365 "2022-08-14 05:15:00" 12.47
-2365 "2022-08-14 05:30:00" 11.26
-2365 "2022-08-14 05:45:00" 12.04
-2365 "2022-08-14 06:00:00" 12.06
-2365 "2022-08-14 06:15:00" 11.15
-2365 "2022-08-14 06:30:00" 11.41
-2365 "2022-08-14 06:45:00" 11.37
-2365 "2022-08-14 07:00:00" 11.84
-2365 "2022-08-14 07:15:00" 11.24
-2365 "2022-08-14 07:30:00" 12.24
-2365 "2022-08-14 07:45:00" 11.4
-2365 "2022-08-14 08:00:00" 11.48
-2365 "2022-08-14 08:15:00" 11.58
-2365 "2022-08-14 08:30:00" 11.42
-2365 "2022-08-14 08:45:00" 12.1
-2365 "2022-08-14 09:00:00" 11.77
-2365 "2022-08-14 09:15:00" 12.47
-2365 "2022-08-14 09:30:00" 11.26
-2365 "2022-08-14 09:45:00" 12.04
-2365 "2022-08-14 10:00:00" 12.06
-2365 "2022-08-14 10:15:00" 11.15
-2365 "2022-08-14 10:30:00" 11.41
-2365 "2022-08-14 10:45:00" 11.37
-2365 "2022-08-14 11:00:00" 11.84
-2365 "2022-08-14 11:15:00" 11.24
-2365 "2022-08-14 11:30:00" 12.24
-2365 "2022-08-14 11:45:00" 11.4
-2365 "2022-08-14 12:00:00" 11.48
-2365 "2022-08-14 12:15:00" 11.58
-2365 "2022-08-14 12:30:00" 11.42
-2365 "2022-08-14 12:45:00" 12.1
-2365 "2022-08-14 13:00:00" 11.77
-2365 "2022-08-14 13:15:00" 12.47
-2365 "2022-08-14 13:30:00" 11.26
-2365 "2022-08-14 13:45:00" 12.04
-2365 "2022-08-14 14:00:00" 12.06
-2365 "2022-08-14 14:15:00" 11.15
-2365 "2022-08-14 14:30:00" 11.42
-2365 "2022-08-14 14:45:00" 11.37
-2365 "2022-08-14 15:00:00" 11.84
-2365 "2022-08-14 15:15:00" 11.24
-2365 "2022-08-14 15:30:00" 12.24
-2365 "2022-08-14 15:45:00" 11.4
-2365 "2022-08-14 16:00:00" 11.48
-2365 "2022-08-14 16:15:00" 11.58
-2365 "2022-08-14 16:30:00" 11.42
-2365 "2022-08-14 16:45:00" 12.1
-2365 "2022-08-14 17:00:00" 11.77
-2365 "2022-08-14 17:15:00" 12.47
-2365 "2022-08-14 17:30:00" 11.26
-2365 "2022-08-14 17:45:00" 12.04
-2365 "2022-08-14 18:00:00" 12.06
-2365 "2022-08-14 18:15:00" 11.15
-2365 "2022-08-14 18:30:00" 11.42
-2365 "2022-08-14 18:45:00" 11.37
-2365 "2022-08-14 19:00:00" 11.84
-2365 "2022-08-14 19:15:00" 11.24
-2365 "2022-08-14 19:30:00" 12.24
-2365 "2022-08-14 19:45:00" 11.4
-2365 "2022-08-14 20:00:00" 11.48
-2365 "2022-08-14 20:15:00" 11.58
-2365 "2022-08-14 20:30:00" 11.42
-2365 "2022-08-14 20:45:00" 12.1
-2365 "2022-08-14 21:00:00" 11.77
-2365 "2022-08-14 21:15:00" 12.47
-2365 "2022-08-14 21:30:00" 11.26
-2365 "2022-08-14 21:45:00" 12.04
-2365 "2022-08-14 22:00:00" 12.06
-2365 "2022-08-14 22:15:00" 11.15
-2365 "2022-08-14 22:30:00" 11.41
-2365 "2022-08-14 22:45:00" 11.37
-2365 "2022-08-14 23:00:00" 11.84
-2365 "2022-08-14 23:15:00" 11.24
-2365 "2022-08-14 23:30:00" 12.24
-2365 "2022-08-14 23:45:00" 11.4
+2365 "2022-08-08 00:00:00" 1.88
+2365 "2022-08-08 00:15:00" 1.81
+2365 "2022-08-08 00:30:00" 1.6
+2365 "2022-08-08 00:45:00" 1.18
+2365 "2022-08-08 01:00:00" 1.09
+2365 "2022-08-08 01:15:00" 1.09
+2365 "2022-08-08 01:30:00" 1.08
+2365 "2022-08-08 01:45:00" 1.2
+2365 "2022-08-08 02:00:00" 0.71
+2365 "2022-08-08 02:15:00" 0.77
+2365 "2022-08-08 02:30:00" 1.34
+2365 "2022-08-08 02:45:00" 1.1
+2365 "2022-08-08 03:00:00" 1.54
+2365 "2022-08-08 03:15:00" 1.8
+2365 "2022-08-08 03:30:00" 1.86
+2365 "2022-08-08 03:45:00" 1.98
+2365 "2022-08-08 04:00:00" 2.23
+2365 "2022-08-08 04:15:00" 2.17
+2365 "2022-08-08 04:30:00" 2.0
+2365 "2022-08-08 04:45:00" 1.67
+2365 "2022-08-08 05:00:00" 1.59
+2365 "2022-08-08 05:15:00" 1.59
+2365 "2022-08-08 05:30:00" 1.71
+2365 "2022-08-08 05:45:00" 1.78
+2365 "2022-08-08 06:00:00" 1.41
+2365 "2022-08-08 06:15:00" 1.56
+2365 "2022-08-08 06:30:00" 2.02
+2365 "2022-08-08 06:45:00" 1.92
+2365 "2022-08-08 07:00:00" 2.36
+2365 "2022-08-08 07:15:00" 2.5
+2365 "2022-08-08 07:30:00" 2.7
+2365 "2022-08-08 07:45:00" 2.83
+2365 "2022-08-08 08:00:00" 14.9
+2365 "2022-08-08 08:15:00" 15.68
+2365 "2022-08-08 08:30:00" 17.73
+2365 "2022-08-08 08:45:00" 18.18
+2365 "2022-08-08 09:00:00" 19.14
+2365 "2022-08-08 09:15:00" 20.91
+2365 "2022-08-08 09:30:00" 22.79
+2365 "2022-08-08 09:45:00" 22.81
+2365 "2022-08-08 10:00:00" 23.69
+2365 "2022-08-08 10:15:00" 23.81
+2365 "2022-08-08 10:30:00" 24.2
+2365 "2022-08-08 10:45:00" 23.06
+2365 "2022-08-08 11:00:00" 24.1
+2365 "2022-08-08 11:15:00" 22.49
+2365 "2022-08-08 11:30:00" 22.67
+2365 "2022-08-08 11:45:00" 22.24
+2365 "2022-08-08 12:00:00" 18.12
+2365 "2022-08-08 12:15:00" 19.02
+2365 "2022-08-08 12:30:00" 21.03
+2365 "2022-08-08 12:45:00" 21.33
+2365 "2022-08-08 13:00:00" 22.2
+2365 "2022-08-08 13:15:00" 24.08
+2365 "2022-08-08 13:30:00" 25.42
+2365 "2022-08-08 13:45:00" 25.49
+2365 "2022-08-08 14:00:00" 25.91
+2365 "2022-08-08 14:15:00" 25.7
+2365 "2022-08-08 14:30:00" 26.06
+2365 "2022-08-08 14:45:00" 24.52
+2365 "2022-08-08 15:00:00" 25.43
+2365 "2022-08-08 15:15:00" 23.78
+2365 "2022-08-08 15:30:00" 23.49
+2365 "2022-08-08 15:45:00" 22.67
+2365 "2022-08-08 16:00:00" 7.3
+2365 "2022-08-08 16:15:00" 7.68
+2365 "2022-08-08 16:30:00" 7.38
+2365 "2022-08-08 16:45:00" 7.21
+2365 "2022-08-08 17:00:00" 7.15
+2365 "2022-08-08 17:15:00" 6.94
+2365 "2022-08-08 17:30:00" 6.35
+2365 "2022-08-08 17:45:00" 6.83
+2365 "2022-08-08 18:00:00" 5.76
+2365 "2022-08-08 18:15:00" 5.59
+2365 "2022-08-08 18:30:00" 5.8
+2365 "2022-08-08 18:45:00" 5.53
+2365 "2022-08-08 19:00:00" 5.38
+2365 "2022-08-08 19:15:00" 5.43
+2365 "2022-08-08 19:30:00" 4.8
+2365 "2022-08-08 19:45:00" 4.9
+2365 "2022-08-08 20:00:00" 1.93
+2365 "2022-08-08 20:15:00" 1.88
+2365 "2022-08-08 20:30:00" 1.57
+2365 "2022-08-08 20:45:00" 1.06
+2365 "2022-08-08 21:00:00" 0.91
+2365 "2022-08-08 21:15:00" 0.88
+2365 "2022-08-08 21:30:00" 0.76
+2365 "2022-08-08 21:45:00" 0.91
+2365 "2022-08-08 22:00:00" 0.23
+2365 "2022-08-08 22:15:00" 0.26
+2365 "2022-08-08 22:30:00" 0.85
+2365 "2022-08-08 22:45:00" 0.56
+2365 "2022-08-08 23:00:00" 1.03
+2365 "2022-08-08 23:15:00" 1.3
+2365 "2022-08-08 23:30:00" 1.29
+2365 "2022-08-08 23:45:00" 1.35
+2365 "2022-08-09 00:00:00" 1.76
+2365 "2022-08-09 00:15:00" 1.72
+2365 "2022-08-09 00:30:00" 1.36
+2365 "2022-08-09 00:45:00" 0.86
+2365 "2022-08-09 01:00:00" 0.72
+2365 "2022-08-09 01:15:00" 0.68
+2365 "2022-08-09 01:30:00" 0.56
+2365 "2022-08-09 01:45:00" 0.67
+2365 "2022-08-09 02:00:00" 0.03
+2365 "2022-08-09 02:15:00" 0.02
+2365 "2022-08-09 02:30:00" 0.62
+2365 "2022-08-09 02:45:00" 0.32
+2365 "2022-08-09 03:00:00" 0.78
+2365 "2022-08-09 03:15:00" 1.06
+2365 "2022-08-09 03:30:00" 1.05
+2365 "2022-08-09 03:45:00" 1.11
+2365 "2022-08-09 04:00:00" 1.68
+2365 "2022-08-09 04:15:00" 1.46
+2365 "2022-08-09 04:30:00" 1.37
+2365 "2022-08-09 04:45:00" 0.94
+2365 "2022-08-09 05:00:00" 0.85
+2365 "2022-08-09 05:15:00" 0.92
+2365 "2022-08-09 05:30:00" 1.09
+2365 "2022-08-09 05:45:00" 1.07
+2365 "2022-08-09 06:00:00" 0.8
+2365 "2022-08-09 06:15:00" 0.93
+2365 "2022-08-09 06:30:00" 1.43
+2365 "2022-08-09 06:45:00" 1.28
+2365 "2022-08-09 07:00:00" 1.91
+2365 "2022-08-09 07:15:00" 2.02
+2365 "2022-08-09 07:30:00" 2.35
+2365 "2022-08-09 07:45:00" 2.45
+2365 "2022-08-09 08:00:00" 13.86
+2365 "2022-08-09 08:15:00" 14.53
+2365 "2022-08-09 08:30:00" 16.44
+2365 "2022-08-09 08:45:00" 16.77
+2365 "2022-08-09 09:00:00" 17.63
+2365 "2022-08-09 09:15:00" 19.23
+2365 "2022-08-09 09:30:00" 20.83
+2365 "2022-08-09 09:45:00" 20.93
+2365 "2022-08-09 10:00:00" 21.66
+2365 "2022-08-09 10:15:00" 21.79
+2365 "2022-08-09 10:30:00" 22.16
+2365 "2022-08-09 10:45:00" 21.13
+2365 "2022-08-09 11:00:00" 22.07
+2365 "2022-08-09 11:15:00" 20.67
+2365 "2022-08-09 11:30:00" 20.82
+2365 "2022-08-09 11:45:00" 20.52
+2365 "2022-08-09 12:00:00" 12.65
+2365 "2022-08-09 12:15:00" 13.22
+2365 "2022-08-09 12:30:00" 14.26
+2365 "2022-08-09 12:45:00" 14.29
+2365 "2022-08-09 13:00:00" 14.78
+2365 "2022-08-09 13:15:00" 15.85
+2365 "2022-08-09 13:30:00" 16.3
+2365 "2022-08-09 13:45:00" 16.72
+2365 "2022-08-09 14:00:00" 16.58
+2365 "2022-08-09 14:15:00" 16.53
+2365 "2022-08-09 14:30:00" 16.79
+2365 "2022-08-09 14:45:00" 16.04
+2365 "2022-08-09 15:00:00" 16.54
+2365 "2022-08-09 15:15:00" 15.48
+2365 "2022-08-09 15:30:00" 15.31
+2365 "2022-08-09 15:45:00" 15.15
+2365 "2022-08-09 16:00:00" 6.42
+2365 "2022-08-09 16:15:00" 6.51
+2365 "2022-08-09 16:30:00" 6.2
+2365 "2022-08-09 16:45:00" 5.84
+2365 "2022-08-09 17:00:00" 5.69
+2365 "2022-08-09 17:15:00" 5.32
+2365 "2022-08-09 17:30:00" 4.53
+2365 "2022-08-09 17:45:00" 4.8
+2365 "2022-08-09 18:00:00" 3.67
+2365 "2022-08-09 18:15:00" 3.5
+2365 "2022-08-09 18:30:00" 3.66
+2365 "2022-08-09 18:45:00" 3.31
+2365 "2022-08-09 19:00:00" 3.26
+2365 "2022-08-09 19:15:00" 3.63
+2365 "2022-08-09 19:30:00" 3.01
+2365 "2022-08-09 19:45:00" 2.99
+2365 "2022-08-09 20:00:00" 2.75
+2365 "2022-08-09 20:15:00" 2.59
+2365 "2022-08-09 20:30:00" 2.18
+2365 "2022-08-09 20:45:00" 1.61
+2365 "2022-08-09 21:00:00" 1.46
+2365 "2022-08-09 21:15:00" 1.35
+2365 "2022-08-09 21:30:00" 1.03
+2365 "2022-08-09 21:45:00" 1.09
+2365 "2022-08-09 22:00:00" 0.33
+2365 "2022-08-09 22:15:00" 0.31
+2365 "2022-08-09 22:30:00" 0.77
+2365 "2022-08-09 22:45:00" 0.44
+2365 "2022-08-09 23:00:00" 0.98
+2365 "2022-08-09 23:15:00" 1.16
+2365 "2022-08-09 23:30:00" 1.22
+2365 "2022-08-09 23:45:00" 1.18
+2365 "2022-08-10 00:00:00" 2.4
+2365 "2022-08-10 00:15:00" 2.05
+2365 "2022-08-10 00:30:00" 1.88
+2365 "2022-08-10 00:45:00" 1.33
+2365 "2022-08-10 01:00:00" 1.24
+2365 "2022-08-10 01:15:00" 1.28
+2365 "2022-08-10 01:30:00" 1.17
+2365 "2022-08-10 01:45:00" 1.09
+2365 "2022-08-10 02:00:00" 0.65
+2365 "2022-08-10 02:15:00" 0.74
+2365 "2022-08-10 02:30:00" 1.18
+2365 "2022-08-10 02:45:00" 0.87
+2365 "2022-08-10 03:00:00" 1.53
+2365 "2022-08-10 03:15:00" 1.69
+2365 "2022-08-10 03:30:00" 1.94
+2365 "2022-08-10 03:45:00" 1.95
+2365 "2022-08-10 04:00:00" 2.67
+2365 "2022-08-10 04:15:00" 2.4
+2365 "2022-08-10 04:30:00" 2.19
+2365 "2022-08-10 04:45:00" 1.64
+2365 "2022-08-10 05:00:00" 1.51
+2365 "2022-08-10 05:15:00" 1.43
+2365 "2022-08-10 05:30:00" 1.23
+2365 "2022-08-10 05:45:00" 1.19
+2365 "2022-08-10 06:00:00" 0.63
+2365 "2022-08-10 06:15:00" 0.66
+2365 "2022-08-10 06:30:00" 1.06
+2365 "2022-08-10 06:45:00" 0.77
+2365 "2022-08-10 07:00:00" 1.36
+2365 "2022-08-10 07:15:00" 1.57
+2365 "2022-08-10 07:30:00" 1.72
+2365 "2022-08-10 07:45:00" 1.7
+2365 "2022-08-10 08:00:00" 4.14
+2365 "2022-08-10 08:15:00" 3.98
+2365 "2022-08-10 08:30:00" 4.32
+2365 "2022-08-10 08:45:00" 4.12
+2365 "2022-08-10 09:00:00" 4.16
+2365 "2022-08-10 09:15:00" 4.26
+2365 "2022-08-10 09:30:00" 4.46
+2365 "2022-08-10 09:45:00" 4.56
+2365 "2022-08-10 10:00:00" 4.38
+2365 "2022-08-10 10:15:00" 4.65
+2365 "2022-08-10 10:30:00" 4.96
+2365 "2022-08-10 10:45:00" 4.81
+2365 "2022-08-10 11:00:00" 5.16
+2365 "2022-08-10 11:15:00" 5.32
+2365 "2022-08-10 11:30:00" 5.39
+2365 "2022-08-10 11:45:00" 5.67
+2365 "2022-08-10 12:00:00" 5.23
+2365 "2022-08-10 12:15:00" 5.06
+2365 "2022-08-10 12:30:00" 5.6
+2365 "2022-08-10 12:45:00" 5.5
+2365 "2022-08-10 13:00:00" 5.7
+2365 "2022-08-10 13:15:00" 5.97
+2365 "2022-08-10 13:30:00" 6.33
+2365 "2022-08-10 13:45:00" 6.42
+2365 "2022-08-10 14:00:00" 6.48
+2365 "2022-08-10 14:15:00" 6.8
+2365 "2022-08-10 14:30:00" 7.04
+2365 "2022-08-10 14:45:00" 6.9
+2365 "2022-08-10 15:00:00" 7.28
+2365 "2022-08-10 15:15:00" 7.2
+2365 "2022-08-10 15:30:00" 7.45
+2365 "2022-08-10 15:45:00" 7.77
+2365 "2022-08-10 16:00:00" 3.36
+2365 "2022-08-10 16:15:00" 3.07
+2365 "2022-08-10 16:30:00" 2.79
+2365 "2022-08-10 16:45:00" 2.26
+2365 "2022-08-10 17:00:00" 2.1
+2365 "2022-08-10 17:15:00" 1.98
+2365 "2022-08-10 17:30:00" 1.77
+2365 "2022-08-10 17:45:00" 1.65
+2365 "2022-08-10 18:00:00" 1.09
+2365 "2022-08-10 18:15:00" 1.23
+2365 "2022-08-10 18:30:00" 1.45
+2365 "2022-08-10 18:45:00" 1.19
+2365 "2022-08-10 19:00:00" 1.82
+2365 "2022-08-10 19:15:00" 1.95
+2365 "2022-08-10 19:30:00" 2.23
+2365 "2022-08-10 19:45:00" 2.17
+2365 "2022-08-10 20:00:00" 2.7
+2365 "2022-08-10 20:15:00" 2.61
+2365 "2022-08-10 20:30:00" 2.53
+2365 "2022-08-10 20:45:00" 2.14
+2365 "2022-08-10 21:00:00" 2.05
+2365 "2022-08-10 21:15:00" 2.09
+2365 "2022-08-10 21:30:00" 2.18
+2365 "2022-08-10 21:45:00" 2.26
+2365 "2022-08-10 22:00:00" 1.88
+2365 "2022-08-10 22:15:00" 2.11
+2365 "2022-08-10 22:30:00" 2.51
+2365 "2022-08-10 22:45:00" 2.33
+2365 "2022-08-10 23:00:00" 2.8
+2365 "2022-08-10 23:15:00" 2.95
+2365 "2022-08-10 23:30:00" 3.17
+2365 "2022-08-10 23:45:00" 3.39
+2365 "2022-08-11 00:00:00" 2.44
+2365 "2022-08-11 00:15:00" 2.32
+2365 "2022-08-11 00:30:00" 2.3
+2365 "2022-08-11 00:45:00" 1.92
+2365 "2022-08-11 01:00:00" 1.86
+2365 "2022-08-11 01:15:00" 1.92
+2365 "2022-08-11 01:30:00" 1.99
+2365 "2022-08-11 01:45:00" 2.08
+2365 "2022-08-11 02:00:00" 1.74
+2365 "2022-08-11 02:15:00" 1.9
+2365 "2022-08-11 02:30:00" 2.38
+2365 "2022-08-11 02:45:00" 2.17
+2365 "2022-08-11 03:00:00" 2.59
+2365 "2022-08-11 03:15:00" 2.82
+2365 "2022-08-11 03:30:00" 2.96
+2365 "2022-08-11 03:45:00" 3.2
+2365 "2022-08-11 04:00:00" 2.64
+2365 "2022-08-11 04:15:00" 2.58
+2365 "2022-08-11 04:30:00" 2.79
+2365 "2022-08-11 04:45:00" 2.51
+2365 "2022-08-11 05:00:00" 2.47
+2365 "2022-08-11 05:15:00" 2.49
+2365 "2022-08-11 05:30:00" 2.71
+2365 "2022-08-11 05:45:00" 2.83
+2365 "2022-08-11 06:00:00" 2.63
+2365 "2022-08-11 06:15:00" 2.82
+2365 "2022-08-11 06:30:00" 3.25
+2365 "2022-08-11 06:45:00" 3.11
+2365 "2022-08-11 07:00:00" 3.46
+2365 "2022-08-11 07:15:00" 3.76
+2365 "2022-08-11 07:30:00" 3.85
+2365 "2022-08-11 07:45:00" 4.16
+2365 "2022-08-11 08:00:00" 4.96
+2365 "2022-08-11 08:15:00" 5.22
+2365 "2022-08-11 08:30:00" 5.99
+2365 "2022-08-11 08:45:00" 5.98
+2365 "2022-08-11 09:00:00" 6.12
+2365 "2022-08-11 09:15:00" 6.44
+2365 "2022-08-11 09:30:00" 7.08
+2365 "2022-08-11 09:45:00" 7.44
+2365 "2022-08-11 10:00:00" 7.45
+2365 "2022-08-11 10:15:00" 7.81
+2365 "2022-08-11 10:30:00" 8.2
+2365 "2022-08-11 10:45:00" 8.04
+2365 "2022-08-11 11:00:00" 8.23
+2365 "2022-08-11 11:15:00" 8.31
+2365 "2022-08-11 11:30:00" 8.23
+2365 "2022-08-11 11:45:00" 8.78
+2365 "2022-08-11 12:00:00" 6.75
+2365 "2022-08-11 12:15:00" 7.26
+2365 "2022-08-11 12:30:00" 7.65
+2365 "2022-08-11 12:45:00" 7.63
+2365 "2022-08-11 13:00:00" 7.78
+2365 "2022-08-11 13:15:00" 8.0
+2365 "2022-08-11 13:30:00" 8.17
+2365 "2022-08-11 13:45:00" 8.69
+2365 "2022-08-11 14:00:00" 8.27
+2365 "2022-08-11 14:15:00" 8.32
+2365 "2022-08-11 14:30:00" 8.71
+2365 "2022-08-11 14:45:00" 8.44
+2365 "2022-08-11 15:00:00" 8.38
+2365 "2022-08-11 15:15:00" 8.32
+2365 "2022-08-11 15:30:00" 7.91
+2365 "2022-08-11 15:45:00" 8.33
+2365 "2022-08-11 16:00:00" 2.85
+2365 "2022-08-11 16:15:00" 2.93
+2365 "2022-08-11 16:30:00" 2.94
+2365 "2022-08-11 16:45:00" 2.6
+2365 "2022-08-11 17:00:00" 2.49
+2365 "2022-08-11 17:15:00" 2.36
+2365 "2022-08-11 17:30:00" 2.31
+2365 "2022-08-11 17:45:00" 2.56
+2365 "2022-08-11 18:00:00" 1.99
+2365 "2022-08-11 18:15:00" 2.02
+2365 "2022-08-11 18:30:00" 2.51
+2365 "2022-08-11 18:45:00" 2.32
+2365 "2022-08-11 19:00:00" 2.51
+2365 "2022-08-11 19:15:00" 2.93
+2365 "2022-08-11 19:30:00" 2.7
+2365 "2022-08-11 19:45:00" 2.92
+2365 "2022-08-11 20:00:00" 1.64
+2365 "2022-08-11 20:15:00" 1.68
+2365 "2022-08-11 20:30:00" 1.64
+2365 "2022-08-11 20:45:00" 1.25
+2365 "2022-08-11 21:00:00" 1.13
+2365 "2022-08-11 21:15:00" 1.18
+2365 "2022-08-11 21:30:00" 1.35
+2365 "2022-08-11 21:45:00" 1.58
+2365 "2022-08-11 22:00:00" 1.13
+2365 "2022-08-11 22:15:00" 1.3
+2365 "2022-08-11 22:30:00" 1.9
+2365 "2022-08-11 22:45:00" 1.73
+2365 "2022-08-11 23:00:00" 2.13
+2365 "2022-08-11 23:15:00" 2.43
+2365 "2022-08-11 23:30:00" 2.44
+2365 "2022-08-11 23:45:00" 2.7
+2365 "2022-08-12 00:00:00" 1.8
+2365 "2022-08-12 00:15:00" 1.8
+2365 "2022-08-12 00:30:00" 1.53
+2365 "2022-08-12 00:45:00" 1.07
+2365 "2022-08-12 01:00:00" 0.93
+2365 "2022-08-12 01:15:00" 0.88
+2365 "2022-08-12 01:30:00" 0.85
+2365 "2022-08-12 01:45:00" 0.97
+2365 "2022-08-12 02:00:00" 0.41
+2365 "2022-08-12 02:15:00" 0.46
+2365 "2022-08-12 02:30:00" 1.01
+2365 "2022-08-12 02:45:00" 0.79
+2365 "2022-08-12 03:00:00" 1.22
+2365 "2022-08-12 03:15:00" 1.52
+2365 "2022-08-12 03:30:00" 1.56
+2365 "2022-08-12 03:45:00" 1.63
+2365 "2022-08-12 04:00:00" 1.0
+2365 "2022-08-12 04:15:00" 1.02
+2365 "2022-08-12 04:30:00" 1.0
+2365 "2022-08-12 04:45:00" 0.69
+2365 "2022-08-12 05:00:00" 0.61
+2365 "2022-08-12 05:15:00" 0.75
+2365 "2022-08-12 05:30:00" 1.17
+2365 "2022-08-12 05:45:00" 1.3
+2365 "2022-08-12 06:00:00" 1.13
+2365 "2022-08-12 06:15:00" 1.35
+2365 "2022-08-12 06:30:00" 1.96
+2365 "2022-08-12 06:45:00" 1.91
+2365 "2022-08-12 07:00:00" 2.41
+2365 "2022-08-12 07:15:00" 2.57
+2365 "2022-08-12 07:30:00" 2.86
+2365 "2022-08-12 07:45:00" 3.12
+2365 "2022-08-12 08:00:00" 14.9
+2365 "2022-08-12 08:15:00" 15.85
+2365 "2022-08-12 08:30:00" 17.8
+2365 "2022-08-12 08:45:00" 18.1
+2365 "2022-08-12 09:00:00" 18.8
+2365 "2022-08-12 09:15:00" 20.36
+2365 "2022-08-12 09:30:00" 21.91
+2365 "2022-08-12 09:45:00" 22.11
+2365 "2022-08-12 10:00:00" 22.54
+2365 "2022-08-12 10:15:00" 22.57
+2365 "2022-08-12 10:30:00" 22.96
+2365 "2022-08-12 10:45:00" 21.74
+2365 "2022-08-12 11:00:00" 22.55
+2365 "2022-08-12 11:15:00" 21.32
+2365 "2022-08-12 11:30:00" 21.02
+2365 "2022-08-12 11:45:00" 20.59
+2365 "2022-08-12 12:00:00" 16.24
+2365 "2022-08-12 12:15:00" 17.65
+2365 "2022-08-12 12:30:00" 17.94
+2365 "2022-08-12 12:45:00" 17.79
+2365 "2022-08-12 13:00:00" 17.38
+2365 "2022-08-12 13:15:00" 17.52
+2365 "2022-08-12 13:30:00" 16.34
+2365 "2022-08-12 13:45:00" 17.23
+2365 "2022-08-12 14:00:00" 15.28
+2365 "2022-08-12 14:15:00" 14.45
+2365 "2022-08-12 14:30:00" 14.57
+2365 "2022-08-12 14:45:00" 13.32
+2365 "2022-08-12 15:00:00" 12.65
+2365 "2022-08-12 15:15:00" 12.92
+2365 "2022-08-12 15:30:00" 10.54
+2365 "2022-08-12 15:45:00" 9.8
+2365 "2022-08-12 16:00:00" 6.0
+2365 "2022-08-12 16:15:00" 6.43
+2365 "2022-08-12 16:30:00" 5.88
+2365 "2022-08-12 16:45:00" 5.63
+2365 "2022-08-12 17:00:00" 5.49
+2365 "2022-08-12 17:15:00" 5.2
+2365 "2022-08-12 17:30:00" 4.56
+2365 "2022-08-12 17:45:00" 5.07
+2365 "2022-08-12 18:00:00" 3.84
+2365 "2022-08-12 18:15:00" 3.67
+2365 "2022-08-12 18:30:00" 3.99
+2365 "2022-08-12 18:45:00" 3.75
+2365 "2022-08-12 19:00:00" 3.57
+2365 "2022-08-12 19:15:00" 3.7
+2365 "2022-08-12 19:30:00" 3.05
+2365 "2022-08-12 19:45:00" 3.24
+2365 "2022-08-12 20:00:00" 2.22
+2365 "2022-08-12 20:15:00" 2.21
+2365 "2022-08-12 20:30:00" 1.96
+2365 "2022-08-12 20:45:00" 1.57
+2365 "2022-08-12 21:00:00" 1.46
+2365 "2022-08-12 21:15:00" 1.4
+2365 "2022-08-12 21:30:00" 1.37
+2365 "2022-08-12 21:45:00" 1.53
+2365 "2022-08-12 22:00:00" 0.97
+2365 "2022-08-12 22:15:00" 1.02
+2365 "2022-08-12 22:30:00" 1.56
+2365 "2022-08-12 22:45:00" 1.37
+2365 "2022-08-12 23:00:00" 1.77
+2365 "2022-08-12 23:15:00" 1.99
+2365 "2022-08-12 23:30:00" 2.01
+2365 "2022-08-12 23:45:00" 2.13
+2365 "2022-08-13 00:00:00" 1.04
+2365 "2022-08-13 00:15:00" 1.11
+2365 "2022-08-13 00:30:00" 0.92
+2365 "2022-08-13 00:45:00" 0.49
+2365 "2022-08-13 01:00:00" 0.38
+2365 "2022-08-13 01:15:00" 0.46
+2365 "2022-08-13 01:30:00" 0.56
+2365 "2022-08-13 01:45:00" 0.81
+2365 "2022-08-13 02:00:00" 0.3
+2365 "2022-08-13 02:15:00" 0.35
+2365 "2022-08-13 02:30:00" 1.1
+2365 "2022-08-13 02:45:00" 0.86
+2365 "2022-08-13 03:00:00" 1.24
+2365 "2022-08-13 03:15:00" 1.55
+2365 "2022-08-13 03:30:00" 1.51
+2365 "2022-08-13 03:45:00" 1.75
+2365 "2022-08-13 04:00:00" 0.94
+2365 "2022-08-13 04:15:00" 0.95
+2365 "2022-08-13 04:30:00" 0.86
+2365 "2022-08-13 04:45:00" 0.49
+2365 "2022-08-13 05:00:00" 0.4
+2365 "2022-08-13 05:15:00" 0.48
+2365 "2022-08-13 05:30:00" 0.73
+2365 "2022-08-13 05:45:00" 0.85
+2365 "2022-08-13 06:00:00" 0.55
+2365 "2022-08-13 06:15:00" 0.66
+2365 "2022-08-13 06:30:00" 1.31
+2365 "2022-08-13 06:45:00" 1.17
+2365 "2022-08-13 07:00:00" 1.63
+2365 "2022-08-13 07:15:00" 1.9
+2365 "2022-08-13 07:30:00" 2.04
+2365 "2022-08-13 07:45:00" 2.24
+2365 "2022-08-13 08:00:00" 9.28
+2365 "2022-08-13 08:15:00" 9.85
+2365 "2022-08-13 08:30:00" 10.9
+2365 "2022-08-13 08:45:00" 11.21
+2365 "2022-08-13 09:00:00" 11.66
+2365 "2022-08-13 09:15:00" 12.43
+2365 "2022-08-13 09:30:00" 13.43
+2365 "2022-08-13 09:45:00" 13.78
+2365 "2022-08-13 10:00:00" 14.01
+2365 "2022-08-13 10:15:00" 14.21
+2365 "2022-08-13 10:30:00" 14.54
+2365 "2022-08-13 10:45:00" 14.16
+2365 "2022-08-13 11:00:00" 14.52
+2365 "2022-08-13 11:15:00" 13.83
+2365 "2022-08-13 11:30:00" 13.76
+2365 "2022-08-13 11:45:00" 13.93
+2365 "2022-08-13 12:00:00" 0.0
+2365 "2022-08-13 12:15:00" 0.0
+2365 "2022-08-13 12:30:00" 0.0
+2365 "2022-08-13 12:45:00" 16.83
+2365 "2022-08-13 13:00:00" 44.32
+2365 "2022-08-13 13:15:00" 0.0
+2365 "2022-08-13 13:30:00" 50.0
+2365 "2022-08-13 13:45:00" 42.67
+2365 "2022-08-13 14:00:00" 50.0
+2365 "2022-08-13 14:15:00" 50.0
+2365 "2022-08-13 14:30:00" 50.0
+2365 "2022-08-13 14:45:00" 50.0
+2365 "2022-08-13 15:00:00" 50.0
+2365 "2022-08-13 15:15:00" 50.0
+2365 "2022-08-13 15:30:00" 50.0
+2365 "2022-08-13 15:45:00" 50.0
+2365 "2022-08-13 16:00:00" 7.46
+2365 "2022-08-13 16:15:00" 7.61
+2365 "2022-08-13 16:30:00" 7.65
+2365 "2022-08-13 16:45:00" 7.5
+2365 "2022-08-13 17:00:00" 7.47
+2365 "2022-08-13 17:15:00" 7.37
+2365 "2022-08-13 17:30:00" 7.02
+2365 "2022-08-13 17:45:00" 7.31
+2365 "2022-08-13 18:00:00" 6.57
+2365 "2022-08-13 18:15:00" 6.55
+2365 "2022-08-13 18:30:00" 6.66
+2365 "2022-08-13 18:45:00" 6.4
+2365 "2022-08-13 19:00:00" 6.44
+2365 "2022-08-13 19:15:00" 6.5
+2365 "2022-08-13 19:30:00" 6.1
+2365 "2022-08-13 19:45:00" 6.11
+2365 "2022-08-13 20:00:00" 2.52
+2365 "2022-08-13 20:15:00" 2.63
+2365 "2022-08-13 20:30:00" 2.2
+2365 "2022-08-13 20:45:00" 1.75
+2365 "2022-08-13 21:00:00" 1.61
+2365 "2022-08-13 21:15:00" 1.49
+2365 "2022-08-13 21:30:00" 1.29
+2365 "2022-08-13 21:45:00" 1.52
+2365 "2022-08-13 22:00:00" 0.73
+2365 "2022-08-13 22:15:00" 0.72
+2365 "2022-08-13 22:30:00" 1.26
+2365 "2022-08-13 22:45:00" 1.04
+2365 "2022-08-13 23:00:00" 1.33
+2365 "2022-08-13 23:15:00" 1.57
+2365 "2022-08-13 23:30:00" 1.46
+2365 "2022-08-13 23:45:00" 1.57
+2365 "2022-08-14 00:00:00" 3.42
+2365 "2022-08-14 00:15:00" 3.03
+2365 "2022-08-14 00:30:00" 3.04
+2365 "2022-08-14 00:45:00" 2.63
+2365 "2022-08-14 01:00:00" 2.54
+2365 "2022-08-14 01:15:00" 2.42
+2365 "2022-08-14 01:30:00" 2.39
+2365 "2022-08-14 01:45:00" 2.22
+2365 "2022-08-14 02:00:00" 1.95
+2365 "2022-08-14 02:15:00" 2.11
+2365 "2022-08-14 02:30:00" 2.31
+2365 "2022-08-14 02:45:00" 2.12
+2365 "2022-08-14 03:00:00" 2.75
+2365 "2022-08-14 03:15:00" 2.96
+2365 "2022-08-14 03:30:00" 3.28
+2365 "2022-08-14 03:45:00" 3.17
+2365 "2022-08-14 04:00:00" 2.52
+2365 "2022-08-14 04:15:00" 2.25
+2365 "2022-08-14 04:30:00" 2.2
+2365 "2022-08-14 04:45:00" 1.78
+2365 "2022-08-14 05:00:00" 1.69
+2365 "2022-08-14 05:15:00" 1.7
+2365 "2022-08-14 05:30:00" 1.88
+2365 "2022-08-14 05:45:00" 1.76
+2365 "2022-08-14 06:00:00" 1.57
+2365 "2022-08-14 06:15:00" 1.79
+2365 "2022-08-14 06:30:00" 2.09
+2365 "2022-08-14 06:45:00" 2.01
+2365 "2022-08-14 07:00:00" 2.71
+2365 "2022-08-14 07:15:00" 2.76
+2365 "2022-08-14 07:30:00" 3.27
+2365 "2022-08-14 07:45:00" 3.24
+2365 "2022-08-14 08:00:00" 12.83
+2365 "2022-08-14 08:15:00" 13.47
+2365 "2022-08-14 08:30:00" 15.12
+2365 "2022-08-14 08:45:00" 15.34
+2365 "2022-08-14 09:00:00" 16.05
+2365 "2022-08-14 09:15:00" 17.46
+2365 "2022-08-14 09:30:00" 18.75
+2365 "2022-08-14 09:45:00" 18.98
+2365 "2022-08-14 10:00:00" 19.46
+2365 "2022-08-14 10:15:00" 19.61
+2365 "2022-08-14 10:30:00" 19.93
+2365 "2022-08-14 10:45:00" 19.08
+2365 "2022-08-14 11:00:00" 19.87
+2365 "2022-08-14 11:15:00" 18.63
+2365 "2022-08-14 11:30:00" 18.72
+2365 "2022-08-14 11:45:00" 18.56
+2365 "2022-08-14 12:00:00" 50.0
+2365 "2022-08-14 12:15:00" 50.0
+2365 "2022-08-14 12:30:00" 50.0
+2365 "2022-08-14 12:45:00" 50.0
+2365 "2022-08-14 13:00:00" 50.0
+2365 "2022-08-14 13:15:00" 50.0
+2365 "2022-08-14 13:30:00" 50.0
+2365 "2022-08-14 13:45:00" 50.0
+2365 "2022-08-14 14:00:00" 50.0
+2365 "2022-08-14 14:15:00" 50.0
+2365 "2022-08-14 14:30:00" 50.0
+2365 "2022-08-14 14:45:00" 50.0
+2365 "2022-08-14 15:00:00" 50.0
+2365 "2022-08-14 15:15:00" 50.0
+2365 "2022-08-14 15:30:00" 31.89
+2365 "2022-08-14 15:45:00" 33.66
+2365 "2022-08-14 16:00:00" 5.81
+2365 "2022-08-14 16:15:00" 5.63
+2365 "2022-08-14 16:30:00" 5.42
+2365 "2022-08-14 16:45:00" 5.21
+2365 "2022-08-14 17:00:00" 5.19
+2365 "2022-08-14 17:15:00" 4.99
+2365 "2022-08-14 17:30:00" 4.66
+2365 "2022-08-14 17:45:00" 4.7
+2365 "2022-08-14 18:00:00" 4.16
+2365 "2022-08-14 18:15:00" 4.17
+2365 "2022-08-14 18:30:00" 4.27
+2365 "2022-08-14 18:45:00" 4.08
+2365 "2022-08-14 19:00:00" 4.37
+2365 "2022-08-14 19:15:00" 4.38
+2365 "2022-08-14 19:30:00" 4.39
+2365 "2022-08-14 19:45:00" 4.34
+2365 "2022-08-14 20:00:00" 4.57
+2365 "2022-08-14 20:15:00" 4.34
+2365 "2022-08-14 20:30:00" 4.14
+2365 "2022-08-14 20:45:00" 3.79
+2365 "2022-08-14 21:00:00" 3.7
+2365 "2022-08-14 21:15:00" 3.53
+2365 "2022-08-14 21:30:00" 3.34
+2365 "2022-08-14 21:45:00" 3.3
+2365 "2022-08-14 22:00:00" 2.78
+2365 "2022-08-14 22:15:00" 2.9
+2365 "2022-08-14 22:30:00" 3.04
+2365 "2022-08-14 22:45:00" 2.89
+2365 "2022-08-14 23:00:00" 3.34
+2365 "2022-08-14 23:15:00" 3.4
+2365 "2022-08-14 23:30:00" 3.58
+2365 "2022-08-14 23:45:00" 3.52

+ 3 - 5
app/predict/tf_lstm_pre.py

@@ -14,10 +14,9 @@ import time, json
 
 model_lock = Lock()
 from itertools import chain
-from app.common.logs import args
+from app.common.logs import logger, args
 from app.model.tf_lstm import TSHandler
 from app.common.dbmg import MongoUtils
-from app.predict.main import logger
 
 np.random.seed(42)  # NumPy随机种子
 
@@ -41,10 +40,9 @@ def model_prediction(pre_data, input_file, cap):
         args['model_table'] += farm_id
         args['scaler_table'] += farm_id
         feature_scaler, target_scaler = mgUtils.get_scaler_model_from_mongo(args)
-        ts.opt.cap = round(target_scaler.transform(cap), 2)
-
+        ts.opt.cap = round(target_scaler.transform(np.array([[float(cap)]]))[0, 0], 2)
         ts.get_model(args)
-        dh.opt.features = json.loads(ts.model_params).get('features', ts.opt.features)
+        dh.opt.features = json.loads(ts.model_params).get('Model').get('features', ts.opt.features).split(',')
         scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
 
         success = 1