|
@@ -25,7 +25,7 @@ class LimitPower(object):
|
|
|
glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率
|
|
|
for index, row in self.weather_power.iterrows():
|
|
|
glob_ = row[self.opt.usable_power_s["env"]]
|
|
|
- rp = row['C_REAL_VALUE']
|
|
|
+ rp = row[self.opt.target]
|
|
|
for i, seg in enumerate(segs):
|
|
|
if glob_ <= seg and not (i > 0 and rp < 1):
|
|
|
glob_rp.setdefault(xs[i], []).append(rp)
|
|
@@ -104,7 +104,7 @@ class LimitPower(object):
|
|
|
new_weather_power = []
|
|
|
for index, row in self.weather_power.iterrows():
|
|
|
zfs = row[self.opt.usable_power_s["env"]]
|
|
|
- rp = row['C_REAL_VALUE']
|
|
|
+ rp = row[self.opt.target]
|
|
|
if self.filter_unlimited_power(zfs, rp, self.opt.usable_power_s['k'], self.opt.usable_power_s['bias'] * self.opt.usable_power_s['coe']):
|
|
|
row['c'] = 'red'
|
|
|
new_weather_power.append(row)
|
|
@@ -112,13 +112,13 @@ class LimitPower(object):
|
|
|
row['c'] = 'blue'
|
|
|
new_weather_power.append(row)
|
|
|
new_weather_power = pd.concat(new_weather_power, axis=1).T
|
|
|
- new_weather_power.plot.scatter(x=self.opt.usable_power_s["env"], y='C_REAL_VALUE', c='c')
|
|
|
+ new_weather_power.plot.scatter(x=self.opt.usable_power_s["env"], y='Power', c='c')
|
|
|
plt.savefig(current_path + '/figs/测光法{}.png'.format(name))
|
|
|
new_weather_power = new_weather_power[new_weather_power['c'] == 'red']
|
|
|
number = len(new_weather_power)
|
|
|
self.logger.info("测光法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
|
|
|
self.logger.info("测光法-清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2)))
|
|
|
- return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']]
|
|
|
+ return new_weather_power.loc[:, ['C_TIME', self.opt.target]]
|
|
|
|
|
|
|
|
|
|