data_analysis.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. # !usr/bin/env python
  2. # -*- coding:utf-8 _*-
  3. """
  4. @Author:Lijiaxing
  5. @File:data_analysis.py
  6. @Time:2023/4/24 15:16
  7. """
  8. import os.path
  9. import pandas as pd
  10. # from mpl_toolkits.basemap import Basemap
  11. from scipy.signal import savgol_filter
  12. import numpy as np
  13. import matplotlib.pyplot as plt
  14. from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
  15. from sklearn.metrics import silhouette_samples, silhouette_score
  16. def paint_others(y):
  17. """ 绘制其他数据 """
  18. plt.plot([j for j in range(y)], y)
  19. # 添加标题和标签
  20. plt.xlabel('x')
  21. plt.ylabel('y')
  22. # 显示图形
  23. plt.show()
  24. def compute_cos_similarity(a, b):
  25. """
  26. 计算两个向量的余弦相似度
  27. :param a: 向量a
  28. :param b: 向量b
  29. :return: 余弦相似度值
  30. """
  31. return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
  32. def compute_pearsonr(a):
  33. """
  34. 计算数据皮尔逊相关系数并返回相似度矩阵
  35. :param a: 数据格式为n*m的矩阵,n为数据个数,m为数据维度
  36. :return: 返回相似度矩阵,数据格式为n*n的矩阵
  37. """
  38. return np.corrcoef(a)
  39. def compute_distance(a, b):
  40. """
  41. 计算两个向量的欧式距离
  42. :param a:
  43. :param b:
  44. :return: 返回两个向量的欧式距离
  45. """
  46. return np.linalg.norm(a - b)
  47. def hierarchical_clustering(data, threshold, similarity_func):
  48. """
  49. 层次聚类,使用工具包scipy.cluster.hierarchy中的linkage和fcluster函数进行层次聚类
  50. :param data: 二维数据,格式为n*m的矩阵,n为数据个数,m为数据维度
  51. :param threshold: 阈值,当两个数据的距离小于阈值时,将两个数据归为一类,阈值为根据相似度矩阵层次聚类后的类别距离阈值,可根据需求进行调整,可大于1
  52. :param similarity_func: 相似度计算函数,用于计算两个数据的相似度,可以进行替换,若替换为计算距离的函数需对内部进行修改
  53. :return: 返回聚类结果,格式为n*1的矩阵,n为数据个数,每个数据的值为该数据所属的类别
  54. """
  55. # 计算数据的相似度矩阵
  56. similarity_matrix = similarity_func(data)
  57. # 计算数据的距离矩阵
  58. distance_matrix = 1 - similarity_matrix
  59. # 进行层次聚类返回聚类结果
  60. Z = linkage(distance_matrix, method='ward')
  61. # 根据相似度阈值获取聚类结果
  62. clusters = fcluster(Z, t=threshold, criterion='distance')
  63. # 画出层次聚类树形结构
  64. fig = plt.figure(figsize=(5, 3))
  65. dn = dendrogram(Z)
  66. plt.show()
  67. # clusters[42] = 1
  68. silhouette = silhouette_samples(np.abs(distance_matrix), clusters, metric='euclidean')
  69. silhouette1 = silhouette_score(np.abs(distance_matrix), clusters, metric='euclidean')
  70. print(f"平均轮廓系数为:{silhouette1}, 单个样本的轮廓系数:{silhouette}")
  71. return clusters
  72. class DataAnalysis:
  73. """
  74. 数据分析类
  75. """
  76. def __init__(self, data_length, data_start, data_end):
  77. """
  78. 初始化
  79. :param data_length: 分析数据段长度
  80. :param data_start: 分析数据段开始位置
  81. :param data_end: 分析数据段结束位置
  82. """
  83. # 原始风机功率数据傅里叶变换滤波后的数据
  84. self.ori_turbine_fft = None
  85. # 原始风机功率数据片段
  86. self.ori_turbine_pic = None
  87. # 聚类结果
  88. self.cluster = None
  89. # 风机功率差分平滑后的结果
  90. self.smooth_turbine_diff = None
  91. # 风机功率差分变化情况
  92. self.diff_change = None
  93. # 风机功率差分
  94. self.turbine_diff = None
  95. # 全部风机数据
  96. self.turbine = None
  97. # 风机的标号顺序
  98. self.turbine_id = list(range(102, 162))
  99. # b1b4 = [142, 143, 144, 145]
  100. # self.turbine_id = [id for id in self.turbine_id if id not in b1b4]
  101. # 风机功率数据15分钟级别
  102. self.power_15min = None
  103. # 风机经纬度信息
  104. self.info = None
  105. # 使用数据长度
  106. self.data_length = data_length
  107. # 使用数据开始位置
  108. self.data_start = data_start
  109. # 使用数据结束位置
  110. self.data_end = data_end
  111. # 导入数据
  112. self.load_data(normalize=True)
  113. # 计算风机功率差分
  114. self.compute_turbine_diff()
  115. def load_data(self, normalize=False):
  116. """
  117. 加载数据
  118. :return:
  119. """
  120. self.info = pd.read_csv('../data-process/data/风机信息.csv', encoding='utf-8')
  121. # power_15min = pd.read_csv('../data/power_15min.csv')
  122. # for i in range(len(power_15min)):
  123. # if power_15min.loc[i, 'C_REAL_VALUE'] == -9999:
  124. # # 方便在曲线中看出缺失数据位置
  125. # power_15min.loc[i, 'C_REAL_VALUE'] = -34.56789
  126. # self.power_15min = power_15min
  127. turbine_path = '../data-process/data/output_filtered_csv_files/turbine-{}.csv'
  128. self.turbine, turbines = {}, []
  129. for i in self.turbine_id:
  130. self.turbine[i] = pd.read_csv(turbine_path.format(i))[20:].reset_index(drop=True)
  131. if normalize is True:
  132. self.normalize()
  133. def normalize(self):
  134. turbines = [self.turbine[i].values[:, 1:].astype(np.float32) for i in self.turbine_id]
  135. turbines = np.vstack(turbines)
  136. mean, std = np.mean(turbines, axis=0), np.std(turbines, axis=0)
  137. for i in self.turbine_id:
  138. c_time = self.turbine[i]['C_TIME']
  139. self.turbine[i] = (self.turbine[i].iloc[:, 1:] - mean) / std
  140. self.turbine[i].insert(loc=0, column='C_TIME', value=c_time)
  141. return self.turbine
  142. def compute_turbine_diff(self):
  143. """
  144. 计算风机功率差分
  145. :return:
  146. """
  147. turbine_diff = []
  148. ori_turbine_pic = []
  149. for turbine_i in self.turbine_id:
  150. ori = np.array(self.turbine[turbine_i]['C_WS'].values[self.data_start:self.data_end + 1])
  151. diff_array = np.diff(ori)
  152. smoothness_value = np.std(diff_array)
  153. print("turbine-{}的平滑度是:{}".format(turbine_i, round(smoothness_value, 2)))
  154. turbine_diff.append(diff_array)
  155. ori_turbine_pic.append(self.turbine[turbine_i]['C_WS'].values[self.data_start:self.data_end])
  156. self.ori_turbine_pic = ori_turbine_pic
  157. self.turbine_diff = turbine_diff
  158. diff_change = []
  159. for diff_i in turbine_diff:
  160. single_diff_change = []
  161. for diff_i_i in diff_i:
  162. if diff_i_i > 0:
  163. single_diff_change.append(1)
  164. elif diff_i_i < 0:
  165. single_diff_change.append(-1)
  166. else:
  167. single_diff_change.append(0)
  168. diff_change.append(single_diff_change)
  169. self.diff_change = diff_change
  170. self.ori_turbine_fft = [self.turbine_fft(i + 1) for i in range(len(self.ori_turbine_pic))]
  171. # 平滑
  172. self.turbine_smooth(window_size=21)
  173. def paint_map(self):
  174. """
  175. 绘制经纬度地图
  176. :return:
  177. """
  178. lats = self.info['纬度'].values
  179. lons = self.info['经度'].values
  180. map = Basemap()
  181. # 绘制海岸线和国家边界
  182. map.drawcoastlines()
  183. map.drawcountries()
  184. # 绘制经纬度坐标
  185. map.drawmeridians(range(0, 360, 30))
  186. map.drawparallels(range(-90, 90, 30))
  187. # 绘制点
  188. x, y = map(lons, lats)
  189. map.plot(x, y, 'bo', markersize=10)
  190. # 显示图表
  191. plt.show()
  192. def paint_power15min(self):
  193. """
  194. 绘制15分钟功率曲线
  195. :return:
  196. """
  197. plt.plot(self.power_15min['C_REAL_VALUE'])
  198. # 设置图表标题和轴标签
  199. plt.title('Data Time Change Curve')
  200. plt.xlabel('Date')
  201. plt.ylabel('Value')
  202. # 显示图表
  203. plt.show()
  204. def paint_lats_lons(self):
  205. """
  206. 绘制经纬度图
  207. :return:
  208. """
  209. x = self.info['纬度'].values
  210. y = self.info['经度'].values
  211. # 绘制散点图
  212. fig, ax = plt.subplots()
  213. plt.scatter(x, y)
  214. for i, txt in enumerate(self.info['id'].values):
  215. ax.annotate(txt, (x[i], y[i]))
  216. # 设置图表标题和轴标签
  217. plt.xlabel('lats')
  218. plt.ylabel('lons')
  219. # 显示图表
  220. plt.show()
  221. def similarity_score(self, turbine_diff, threshold=0.5):
  222. """
  223. 使用余弦相似度计算相似度分数并返回相似度大于阈值的index矩阵
  224. :param turbine_diff: 需要计算相似的矩阵,数据格式n*m,n为数据条数,m为数据维数
  225. :param threshold: 相似度阈值
  226. :return: 返回相似计算后的矩阵
  227. """
  228. similarity = {i: [] for i in range(49)}
  229. similarity_index = {i: [] for i in range(49)}
  230. for turbine_i in range(49):
  231. for turbine_j in range(49):
  232. cos_similarity = compute_cos_similarity(turbine_diff[turbine_i], turbine_diff[turbine_j])
  233. similarity[turbine_i].append(cos_similarity)
  234. if cos_similarity > threshold:
  235. similarity_index[turbine_i].append(turbine_j)
  236. return similarity_index
  237. def paint_turbine(self, paint_default=True):
  238. """
  239. 绘制风机地理位置图
  240. :param paint_default:默认True,绘制聚类后每个类别的数据折线图
  241. :return: None
  242. """
  243. # y = self.info['纬度'].values
  244. # x = self.info['经度'].values
  245. #
  246. # fig, ax = plt.subplots(figsize=(15, 15))
  247. #
  248. # plt.scatter(x, y, c=self.cluster)
  249. # for i, txt in enumerate(self.info['C_ID'].values):
  250. # ax.annotate(txt, (x[i], y[i]))
  251. # 设置图表标题和轴标签
  252. # plt.xlabel('lons')
  253. # plt.ylabel('lats')
  254. # plt.legend()
  255. #
  256. # # 显示图表
  257. # plt.savefig('analysis_img/turbine_cluster.png')
  258. # plt.show()
  259. plt.figure(figsize=(20, 10))
  260. cmap = plt.get_cmap('viridis')
  261. linestyle= ['solid', 'dashed']
  262. for i in range(max(self.cluster)):
  263. cluster, cluster_fft = [], []
  264. for j, item in enumerate(self.cluster):
  265. if item == i + 1:
  266. cluster.append(self.ori_turbine_pic[j])
  267. cluster_fft.append(self.ori_turbine_fft[j])
  268. cluster_fft = np.average(cluster_fft, axis=0)
  269. cluster = np.average(cluster, axis=0)
  270. diff_array = np.diff(cluster)
  271. smoothness_value = np.std(diff_array)
  272. print("聚类-{}的平滑度是:{}".format(i+1, smoothness_value))
  273. color = cmap(i*200)
  274. plt.subplot(2, 1, 1)
  275. plt.plot([j for j in range(len(cluster))], cluster, color=color, label='cluster'+str(i), linestyle=linestyle[i])
  276. plt.subplot(2, 1, 2)
  277. plt.plot([j for j in range(len(cluster_fft))], cluster_fft, color=color, label='cluster'+str(i), linestyle=linestyle[i])
  278. # 添加图例
  279. plt.legend()
  280. # 显示图形
  281. plt.savefig('analysis_img/cluster/clusters.png')
  282. plt.show()
  283. if paint_default:
  284. for i in range(max(self.cluster)):
  285. self.paint_turbine_k(i + 1) # 画出聚类中每个风机的曲线
  286. def turbine_smooth(self, window_size=50):
  287. """
  288. 使用滑动平均平滑数据。
  289. 参数:
  290. data -- 需要平滑的数据,numpy数组类型
  291. window_size -- 滑动窗口大小,整数类型
  292. 返回值:
  293. smooth_data -- 平滑后的数据,numpy数组类型
  294. """
  295. # weights = np.repeat(1.0, window_size) / window_size
  296. smooth_data = []
  297. for turbine_diff_i in self.turbine_diff:
  298. smooth_y = savgol_filter(turbine_diff_i, window_length=window_size, polyorder=3)
  299. smooth_data.append(smooth_y)
  300. # smooth_data.append(np.convolve(turbine_diff_i, weights, 'valid'))
  301. self.smooth_turbine_diff = smooth_data
  302. def paint_turbine_k(self, k):
  303. """
  304. 绘制第k聚类的风机数据折线图
  305. :param k:
  306. :return:
  307. """
  308. pic_label = []
  309. y = []
  310. plt.figure(figsize=(20, 10))
  311. cmap = plt.get_cmap('viridis')
  312. for i, item in enumerate(self.cluster):
  313. if item == k:
  314. pic_label.append('turbine-' + str(self.turbine_id[i]))
  315. y.append(self.ori_turbine_fft[i])
  316. for i in range(len(y)):
  317. color = cmap(i / 10)
  318. plt.plot([j for j in range(len(y[i]))], y[i], color=color, label=pic_label[i])
  319. # 添加标签和标题
  320. plt.xlabel('x')
  321. plt.ylabel('y')
  322. plt.title('Cluster {}'.format(k))
  323. # 添加图例
  324. plt.legend()
  325. # 显示图形
  326. plt.savefig('analysis_img/cluster/cluster_{}.png'.format(k))
  327. plt.show()
  328. def turbine_fft(self, k):
  329. """
  330. 对第k台原始风机数据进行傅里叶变换,并绘制变换前后曲线
  331. :param k: 数据读入时的风机顺序index,从1开始
  332. :return: 傅里叶变换清洗后的数据,数据格式
  333. """
  334. y = self.ori_turbine_pic
  335. t = np.linspace(0, 1, self.data_length)
  336. signal = y[k - 1]
  337. # 进行傅里叶变换
  338. freq = np.fft.fftfreq(len(signal), t[1] - t[0])
  339. spectrum = np.fft.fft(signal)
  340. spectrum_abs = np.abs(spectrum)
  341. threshold = np.percentile(spectrum_abs, 98)
  342. indices = spectrum_abs > threshold
  343. spectrum_clean = indices * spectrum
  344. # 进行傅里叶逆变换
  345. signal_clean = np.fft.ifft(spectrum_clean)
  346. # plt.figure(figsize=(20, 10))
  347. #
  348. # # 绘制时域信号
  349. # plt.subplot(4, 1, 1)
  350. # plt.plot(t, signal)
  351. # plt.title(self.turbine_id[k-1])
  352. #
  353. # # 绘制频域信号
  354. # plt.subplot(4, 1, 2)
  355. # plt.plot(freq, np.abs(spectrum))
  356. #
  357. # # 绘制过滤后的频域信号
  358. # plt.subplot(4, 1, 3)
  359. # plt.plot(freq, np.abs(spectrum_clean))
  360. #
  361. # # 绘制过滤后的时域信号
  362. # plt.subplot(4, 1, 4)
  363. # plt.plot(t, signal_clean)
  364. #
  365. # plt.savefig('analysis_img/fft/{}_turbine_fft.png'.format(self.turbine_id[k-1]))
  366. # plt.show()
  367. return signal_clean
  368. def paint_double(self, i, j):
  369. """
  370. 绘制两台风机的数据变换对比
  371. :param i: 风机数据读入时数据编号,从1开始
  372. :param j: 风机数据读入时数据编号,从1开始
  373. :return:
  374. """
  375. y = self.ori_turbine_fft
  376. x = [index for index in range(self.data_length)]
  377. data_i = y[i - 1]
  378. data_j = y[j - 1]
  379. plt.figure(figsize=(20, 10))
  380. plt.plot(x, data_i, label='turbine {}'.format(self.turbine_id[i - 1]), linestyle='solid')
  381. plt.plot(x, data_j, label='turbine {}'.format(self.turbine_id[j - 1]), linestyle='dashed')
  382. plt.title('{} and {}'.format(i, j))
  383. plt.legend()
  384. plt.savefig('analysis_img/{}_{}_turbine.png'.format(self.turbine_id[i - 1], self.turbine_id[j - 1]))
  385. plt.show()
  386. def process_ori_data(self):
  387. """
  388. 对原始数据进行处理,聚类和绘图
  389. :return:
  390. """
  391. self.turbine_clusters(self.ori_turbine_fft)
  392. self.paint_turbine()
  393. def turbine_clusters(self, data=None):
  394. """
  395. 风机数据聚类,聚类信息保存在self.cluster中
  396. :param data: 默认为空,也可以使用其他数据聚类,并体现在绘图中,
  397. 数据格式:二维数据n*m,n为数据条数,m为每条数据维数
  398. :return: None
  399. """
  400. if data is None:
  401. cluster = hierarchical_clustering(self.turbine_diff, threshold=1.4,
  402. similarity_func=compute_pearsonr) # 层次聚类
  403. else:
  404. cluster = hierarchical_clustering(data, threshold=0.8,
  405. similarity_func=compute_pearsonr)
  406. self.cluster = cluster
  407. # 在这里保存cluster变量
  408. from cluster_analysis import cluster_power_list_file, cluster_power_list_folder
  409. output_path = '../data-process/data/cluster_power/'
  410. cluster_power_list_file(self.cluster, self.turbine_id,
  411. input_path='../data-process/data/output_filtered_csv_files/', output_path=output_path)
  412. cluster_power_list_folder(self.cluster, self.turbine_id, input_path='../data-process/data/continuous_data/',
  413. output_path=output_path)
  414. data_analysis = DataAnalysis(data_length=9773,
  415. data_start=0,
  416. data_end=9773)
  417. data_analysis.process_ori_data()
  418. data_analysis.paint_double(1, 56)