data_analysis.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425
  1. # !usr/bin/env python
  2. # -*- coding:utf-8 _*-
  3. """
  4. @Author:Lijiaxing
  5. @File:data_analysis.py
  6. @Time:2023/4/24 15:16
  7. """
  8. import pandas as pd
  9. #from mpl_toolkits.basemap import Basemap
  10. from scipy.signal import savgol_filter
  11. import numpy as np
  12. import matplotlib.pyplot as plt
  13. from scipy.cluster.hierarchy import linkage, fcluster
  14. def paint_others(y):
  15. """ 绘制其他数据 """
  16. plt.plot([j for j in range(y)], y)
  17. # 添加标题和标签
  18. plt.xlabel('x')
  19. plt.ylabel('y')
  20. # 显示图形
  21. plt.show()
  22. def compute_cos_similarity(a, b):
  23. """
  24. 计算两个向量的余弦相似度
  25. :param a: 向量a
  26. :param b: 向量b
  27. :return: 余弦相似度值
  28. """
  29. return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
  30. def compute_pearsonr(a):
  31. """
  32. 计算数据皮尔逊相关系数并返回相似度矩阵
  33. :param a: 数据格式为n*m的矩阵,n为数据个数,m为数据维度
  34. :return: 返回相似度矩阵,数据格式为n*n的矩阵
  35. """
  36. return np.corrcoef(a)
  37. def compute_distance(a, b):
  38. """
  39. 计算两个向量的欧式距离
  40. :param a:
  41. :param b:
  42. :return: 返回两个向量的欧式距离
  43. """
  44. return np.linalg.norm(a - b)
  45. def hierarchical_clustering(data, threshold, similarity_func):
  46. """
  47. 层次聚类,使用工具包scipy.cluster.hierarchy中的linkage和fcluster函数进行层次聚类
  48. :param data: 二维数据,格式为n*m的矩阵,n为数据个数,m为数据维度
  49. :param threshold: 阈值,当两个数据的距离小于阈值时,将两个数据归为一类,阈值为根据相似度矩阵层次聚类后的类别距离阈值,可根据需求进行调整,可大于1
  50. :param similarity_func: 相似度计算函数,用于计算两个数据的相似度,可以进行替换,若替换为计算距离的函数需对内部进行修改
  51. :return: 返回聚类结果,格式为n*1的矩阵,n为数据个数,每个数据的值为该数据所属的类别
  52. """
  53. # 计算数据的相似度矩阵
  54. similarity_matrix = similarity_func(data)
  55. # 计算数据的距离矩阵
  56. distance_matrix = 1 - similarity_matrix
  57. # 进行层次聚类返回聚类结果
  58. Z = linkage(distance_matrix, method='ward')
  59. # 根据相似度阈值获取聚类结果
  60. clusters = fcluster(Z, t=threshold, criterion='distance')
  61. return clusters
  62. class DataAnalysis:
  63. """
  64. 数据分析类
  65. """
  66. def __init__(self, data_length, data_start, data_end):
  67. """
  68. 初始化
  69. :param data_length: 分析数据段长度
  70. :param data_start: 分析数据段开始位置
  71. :param data_end: 分析数据段结束位置
  72. """
  73. # 原始风机功率数据傅里叶变换滤波后的数据
  74. self.ori_turbine_fft = None
  75. # 原始风机功率数据片段
  76. self.ori_turbine_pic = None
  77. # 聚类结果
  78. self.cluster = None
  79. # 风机功率差分平滑后的结果
  80. self.smooth_turbine_diff = None
  81. # 风机功率差分变化情况
  82. self.diff_change = None
  83. # 风机功率差分
  84. self.turbine_diff = None
  85. # 全部风机数据
  86. self.turbine = None
  87. # 风机的标号顺序
  88. self.turbine_id = list(range(102, 162))
  89. self.turbine_id.remove(144)
  90. # 风机功率数据15分钟级别
  91. self.power_15min = None
  92. # 风机经纬度信息
  93. self.info = None
  94. # 使用数据长度
  95. self.data_length = data_length
  96. # 使用数据开始位置
  97. self.data_start = data_start
  98. # 使用数据结束位置
  99. self.data_end = data_end
  100. # 导入数据
  101. self.load_data()
  102. # 计算风机功率差分
  103. self.compute_turbine_diff()
  104. def load_data(self):
  105. """
  106. 加载数据
  107. :return:
  108. """
  109. self.info = pd.read_csv('../data/风机信息.csv', encoding='utf-8')
  110. # power_15min = pd.read_csv('../data/power_15min.csv')
  111. # for i in range(len(power_15min)):
  112. # if power_15min.loc[i, 'C_REAL_VALUE'] == -9999:
  113. # # 方便在曲线中看出缺失数据位置
  114. # power_15min.loc[i, 'C_REAL_VALUE'] = -34.56789
  115. # self.power_15min = power_15min
  116. turbine_path = '../data/output_filtered_csv_files/turbine-{}.csv'
  117. self.turbine = {}
  118. for i in self.turbine_id:
  119. self.turbine[i] = pd.read_csv(turbine_path.format(i))[21:]
  120. def compute_turbine_diff(self):
  121. """
  122. 计算风机功率差分
  123. :return:
  124. """
  125. turbine_diff = []
  126. ori_turbine_pic = []
  127. for turbine_i in self.turbine_id:
  128. diff_array = np.diff(
  129. np.array(self.turbine[turbine_i]['C_ACTIVE_POWER'].values[self.data_start:self.data_end+1]))
  130. turbine_diff.append(diff_array)
  131. ori_turbine_pic.append(self.turbine[turbine_i]['C_ACTIVE_POWER'].values[self.data_start:self.data_end])
  132. self.ori_turbine_pic = ori_turbine_pic
  133. self.turbine_diff = turbine_diff
  134. diff_change = []
  135. for diff_i in turbine_diff:
  136. single_diff_change = []
  137. for diff_i_i in diff_i:
  138. if diff_i_i > 0:
  139. single_diff_change.append(1)
  140. elif diff_i_i < 0:
  141. single_diff_change.append(-1)
  142. else:
  143. single_diff_change.append(0)
  144. diff_change.append(single_diff_change)
  145. self.diff_change = diff_change
  146. self.ori_turbine_fft = [self.turbine_fft(i + 1) for i in range(len(self.ori_turbine_pic))]
  147. # 平滑
  148. self.turbine_smooth(window_size=21)
  149. def paint_map(self):
  150. """
  151. 绘制经纬度地图
  152. :return:
  153. """
  154. lats = self.info['纬度'].values
  155. lons = self.info['经度'].values
  156. map = Basemap()
  157. # 绘制海岸线和国家边界
  158. map.drawcoastlines()
  159. map.drawcountries()
  160. # 绘制经纬度坐标
  161. map.drawmeridians(range(0, 360, 30))
  162. map.drawparallels(range(-90, 90, 30))
  163. # 绘制点
  164. x, y = map(lons, lats)
  165. map.plot(x, y, 'bo', markersize=10)
  166. # 显示图表
  167. plt.show()
  168. def paint_power15min(self):
  169. """
  170. 绘制15分钟功率曲线
  171. :return:
  172. """
  173. plt.plot(self.power_15min['C_REAL_VALUE'])
  174. # 设置图表标题和轴标签
  175. plt.title('Data Time Change Curve')
  176. plt.xlabel('Date')
  177. plt.ylabel('Value')
  178. # 显示图表
  179. plt.show()
  180. def paint_lats_lons(self):
  181. """
  182. 绘制经纬度图
  183. :return:
  184. """
  185. x = self.info['纬度'].values
  186. y = self.info['经度'].values
  187. # 绘制散点图
  188. fig, ax = plt.subplots()
  189. plt.scatter(x, y)
  190. for i, txt in enumerate(self.info['id'].values):
  191. ax.annotate(txt, (x[i], y[i]))
  192. # 设置图表标题和轴标签
  193. plt.xlabel('lats')
  194. plt.ylabel('lons')
  195. # 显示图表
  196. plt.show()
  197. def similarity_score(self, turbine_diff, threshold=0.5):
  198. """
  199. 使用余弦相似度计算相似度分数并返回相似度大于阈值的index矩阵
  200. :param turbine_diff: 需要计算相似的矩阵,数据格式n*m,n为数据条数,m为数据维数
  201. :param threshold: 相似度阈值
  202. :return: 返回相似计算后的矩阵
  203. """
  204. similarity = {i: [] for i in range(49)}
  205. similarity_index = {i: [] for i in range(49)}
  206. for turbine_i in range(49):
  207. for turbine_j in range(49):
  208. cos_similarity = compute_cos_similarity(turbine_diff[turbine_i], turbine_diff[turbine_j])
  209. similarity[turbine_i].append(cos_similarity)
  210. if cos_similarity > threshold:
  211. similarity_index[turbine_i].append(turbine_j)
  212. return similarity_index
  213. def paint_turbine(self, paint_default=True):
  214. """
  215. 绘制风机地理位置图
  216. :param paint_default:默认True,绘制聚类后每个类别的数据折线图
  217. :return: None
  218. """
  219. # y = self.info['纬度'].values
  220. # x = self.info['经度'].values
  221. #
  222. # fig, ax = plt.subplots(figsize=(15, 15))
  223. #
  224. # plt.scatter(x, y, c=self.cluster)
  225. # for i, txt in enumerate(self.info['C_ID'].values):
  226. # ax.annotate(txt, (x[i], y[i]))
  227. # 设置图表标题和轴标签
  228. # plt.xlabel('lons')
  229. # plt.ylabel('lats')
  230. # plt.legend()
  231. #
  232. # # 显示图表
  233. # plt.savefig('analysis_img/turbine_cluster.png')
  234. # plt.show()
  235. if paint_default:
  236. for i in range(max(self.cluster)):
  237. self.paint_turbine_k(i + 1)
  238. def turbine_smooth(self, window_size=50):
  239. """
  240. 使用滑动平均平滑数据。
  241. 参数:
  242. data -- 需要平滑的数据,numpy数组类型
  243. window_size -- 滑动窗口大小,整数类型
  244. 返回值:
  245. smooth_data -- 平滑后的数据,numpy数组类型
  246. """
  247. # weights = np.repeat(1.0, window_size) / window_size
  248. smooth_data = []
  249. for turbine_diff_i in self.turbine_diff:
  250. smooth_y = savgol_filter(turbine_diff_i, window_length=window_size, polyorder=3)
  251. smooth_data.append(smooth_y)
  252. # smooth_data.append(np.convolve(turbine_diff_i, weights, 'valid'))
  253. self.smooth_turbine_diff = smooth_data
  254. def paint_turbine_k(self, k):
  255. """
  256. 绘制第k聚类的风机数据折线图
  257. :param k:
  258. :return:
  259. """
  260. pic_label = []
  261. y = []
  262. plt.figure(figsize=(20, 10))
  263. cmap = plt.get_cmap('viridis')
  264. for i, item in enumerate(self.cluster):
  265. if item == k:
  266. pic_label.append('turbine-'+str(self.turbine_id[i]))
  267. y.append(self.ori_turbine_fft[i])
  268. for i in range(len(y)):
  269. color = cmap(i / 10)
  270. plt.plot([j for j in range(len(y[i]))], y[i], color=color, label=pic_label[i])
  271. # 添加标签和标题
  272. plt.xlabel('x')
  273. plt.ylabel('y')
  274. plt.title('Cluster {}'.format(k))
  275. # 添加图例
  276. plt.legend()
  277. # 显示图形
  278. plt.savefig('analysis_img/cluster/cluster_{}.png'.format(k))
  279. plt.show()
  280. def turbine_fft(self, k):
  281. """
  282. 对第k台原始风机数据进行傅里叶变换,并绘制变换前后曲线
  283. :param k: 数据读入时的风机顺序index,从1开始
  284. :return: 傅里叶变换清洗后的数据,数据格式
  285. """
  286. y = self.ori_turbine_pic
  287. t = np.linspace(0, 1, self.data_length)
  288. signal = y[k - 1]
  289. # 进行傅里叶变换
  290. freq = np.fft.fftfreq(len(signal), t[1] - t[0])
  291. spectrum = np.fft.fft(signal)
  292. spectrum_abs = np.abs(spectrum)
  293. threshold = np.percentile(spectrum_abs, 98)
  294. indices = spectrum_abs > threshold
  295. spectrum_clean = indices * spectrum
  296. # 进行傅里叶逆变换
  297. signal_clean = np.fft.ifft(spectrum_clean)
  298. # plt.figure(figsize=(20, 10))
  299. #
  300. # # 绘制时域信号
  301. # plt.subplot(4, 1, 1)
  302. # plt.plot(t, signal)
  303. # plt.title(k)
  304. #
  305. # # 绘制频域信号
  306. # plt.subplot(4, 1, 2)
  307. # plt.plot(freq, np.abs(spectrum))
  308. #
  309. # # 绘制过滤后的频域信号
  310. # plt.subplot(4, 1, 3)
  311. # plt.plot(freq, np.abs(spectrum_clean))
  312. #
  313. # # 绘制过滤后的时域信号
  314. # plt.subplot(4, 1, 4)
  315. # plt.plot(t, signal_clean)
  316. #
  317. # plt.savefig('analysis_img/fft/{}_turbine_fft.png'.format(k))
  318. # plt.show()
  319. return signal_clean
  320. def paint_double(self, i, j):
  321. """
  322. 绘制两台风机的数据变换对比
  323. :param i: 风机数据读入时数据编号,从1开始
  324. :param j: 风机数据读入时数据编号,从1开始
  325. :return:
  326. """
  327. y = self.ori_turbine_fft
  328. x = [index for index in range(self.data_length)]
  329. data_i = y[i - 1]
  330. data_j = y[j - 1]
  331. plt.figure(figsize=(20, 10))
  332. plt.plot(x, data_i, label='turbine {}'.format(self.turbine_id[i-1]), linestyle='solid')
  333. plt.plot(x, data_j, label='turbine {}'.format(self.turbine_id[j-1]), linestyle='dashed')
  334. plt.title('{} and {}'.format(i, j))
  335. plt.legend()
  336. plt.savefig('analysis_img/{}_{}_turbine.png'.format(self.turbine_id[i-1], self.turbine_id[j-1]))
  337. plt.show()
  338. def process_ori_data(self):
  339. """
  340. 对原始数据进行处理,聚类和绘图
  341. :return:
  342. """
  343. self.turbine_clusters(self.ori_turbine_fft)
  344. self.paint_turbine()
  345. def turbine_clusters(self, data=None):
  346. """
  347. 风机数据聚类,聚类信息保存在self.cluster中
  348. :param data: 默认为空,也可以使用其他数据聚类,并体现在绘图中,
  349. 数据格式:二维数据n*m,n为数据条数,m为每条数据维数
  350. :return: None
  351. """
  352. if data is None:
  353. cluster = hierarchical_clustering(self.turbine_diff, threshold=1.4,
  354. similarity_func=compute_pearsonr) # 层次聚类
  355. else:
  356. cluster = hierarchical_clustering(data, threshold=1,
  357. similarity_func=compute_pearsonr)
  358. self.cluster = cluster
  359. from cluster_power import cluster_power
  360. out_put = '../data/cluester_power/'
  361. cluster_power(self.cluster, out_put)
  362. data_analysis = DataAnalysis(data_length=9771,
  363. data_start=0,
  364. data_end=9771)
  365. data_analysis.process_ori_data()
  366. data_analysis.paint_double(20, 21)