data_analysis.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. # !usr/bin/env python
  2. # -*- coding:utf-8 _*-
  3. """
  4. @Author:Lijiaxing
  5. @File:data_analysis.py
  6. @Time:2023/4/24 15:16
  7. """
  8. import os.path
  9. import pandas as pd
  10. # from mpl_toolkits.basemap import Basemap
  11. from scipy.signal import savgol_filter
  12. import numpy as np
  13. import matplotlib.pyplot as plt
  14. from scipy.cluster.hierarchy import linkage, fcluster
  15. def paint_others(y):
  16. """ 绘制其他数据 """
  17. plt.plot([j for j in range(y)], y)
  18. # 添加标题和标签
  19. plt.xlabel('x')
  20. plt.ylabel('y')
  21. # 显示图形
  22. plt.show()
  23. def compute_cos_similarity(a, b):
  24. """
  25. 计算两个向量的余弦相似度
  26. :param a: 向量a
  27. :param b: 向量b
  28. :return: 余弦相似度值
  29. """
  30. return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
  31. def compute_pearsonr(a):
  32. """
  33. 计算数据皮尔逊相关系数并返回相似度矩阵
  34. :param a: 数据格式为n*m的矩阵,n为数据个数,m为数据维度
  35. :return: 返回相似度矩阵,数据格式为n*n的矩阵
  36. """
  37. return np.corrcoef(a)
  38. def compute_distance(a, b):
  39. """
  40. 计算两个向量的欧式距离
  41. :param a:
  42. :param b:
  43. :return: 返回两个向量的欧式距离
  44. """
  45. return np.linalg.norm(a - b)
  46. def hierarchical_clustering(data, threshold, similarity_func):
  47. """
  48. 层次聚类,使用工具包scipy.cluster.hierarchy中的linkage和fcluster函数进行层次聚类
  49. :param data: 二维数据,格式为n*m的矩阵,n为数据个数,m为数据维度
  50. :param threshold: 阈值,当两个数据的距离小于阈值时,将两个数据归为一类,阈值为根据相似度矩阵层次聚类后的类别距离阈值,可根据需求进行调整,可大于1
  51. :param similarity_func: 相似度计算函数,用于计算两个数据的相似度,可以进行替换,若替换为计算距离的函数需对内部进行修改
  52. :return: 返回聚类结果,格式为n*1的矩阵,n为数据个数,每个数据的值为该数据所属的类别
  53. """
  54. # 计算数据的相似度矩阵
  55. similarity_matrix = similarity_func(data)
  56. # 计算数据的距离矩阵
  57. distance_matrix = 1 - similarity_matrix
  58. # 进行层次聚类返回聚类结果
  59. Z = linkage(distance_matrix, method='ward')
  60. # 根据相似度阈值获取聚类结果
  61. clusters = fcluster(Z, t=threshold, criterion='distance')
  62. return clusters
  63. class DataAnalysis:
  64. """
  65. 数据分析类
  66. """
  67. def __init__(self, data_length, data_start, data_end):
  68. """
  69. 初始化
  70. :param data_length: 分析数据段长度
  71. :param data_start: 分析数据段开始位置
  72. :param data_end: 分析数据段结束位置
  73. """
  74. # 原始风机功率数据傅里叶变换滤波后的数据
  75. self.ori_turbine_fft = None
  76. # 原始风机功率数据片段
  77. self.ori_turbine_pic = None
  78. # 聚类结果
  79. self.cluster = None
  80. # 风机功率差分平滑后的结果
  81. self.smooth_turbine_diff = None
  82. # 风机功率差分变化情况
  83. self.diff_change = None
  84. # 风机功率差分
  85. self.turbine_diff = None
  86. # 全部风机数据
  87. self.turbine = None
  88. # 风机的标号顺序
  89. self.turbine_id = list(range(102, 162))
  90. b1b4 = [142, 143, 144, 145]
  91. self.turbine_id = [id for id in self.turbine_id if id not in b1b4]
  92. # 风机功率数据15分钟级别
  93. self.power_15min = None
  94. # 风机经纬度信息
  95. self.info = None
  96. # 使用数据长度
  97. self.data_length = data_length
  98. # 使用数据开始位置
  99. self.data_start = data_start
  100. # 使用数据结束位置
  101. self.data_end = data_end
  102. # 导入数据
  103. self.load_data()
  104. # 计算风机功率差分
  105. self.compute_turbine_diff()
  106. def load_data(self, normalize=False):
  107. """
  108. 加载数据
  109. :return:
  110. """
  111. self.info = pd.read_csv('../data-process/data/风机信息.csv', encoding='utf-8')
  112. # power_15min = pd.read_csv('../data/power_15min.csv')
  113. # for i in range(len(power_15min)):
  114. # if power_15min.loc[i, 'C_REAL_VALUE'] == -9999:
  115. # # 方便在曲线中看出缺失数据位置
  116. # power_15min.loc[i, 'C_REAL_VALUE'] = -34.56789
  117. # self.power_15min = power_15min
  118. turbine_path = '../data-process/data/output_filtered_csv_files/turbine-{}.csv'
  119. self.turbine, turbines = {}, []
  120. for i in self.turbine_id:
  121. self.turbine[i] = pd.read_csv(turbine_path.format(i))[20:].reset_index(drop=True)
  122. if normalize:
  123. self.normalize()
  124. def normalize(self):
  125. turbines = [self.turbine[i].values[:, 1:].astype(np.float32) for i in self.turbine_id]
  126. turbines = np.vstack(turbines)
  127. mean, std = np.mean(turbines, axis=0), np.std(turbines, axis=0)
  128. for i in self.turbine_id:
  129. c_time = self.turbine[i]['C_TIME']
  130. self.turbine[i] = (self.turbine[i].iloc[:, 1:] - mean) / std
  131. self.turbine[i].insert(loc=0, column='C_TIME', value=c_time)
  132. return self.turbine
  133. def compute_turbine_diff(self):
  134. """
  135. 计算风机功率差分
  136. :return:
  137. """
  138. turbine_diff = []
  139. ori_turbine_pic = []
  140. for turbine_i in self.turbine_id:
  141. diff_array = np.diff(
  142. np.array(self.turbine[turbine_i]['C_ACTIVE_POWER'].values[self.data_start:self.data_end + 1]))
  143. turbine_diff.append(diff_array)
  144. ori_turbine_pic.append(self.turbine[turbine_i]['C_ACTIVE_POWER'].values[self.data_start:self.data_end])
  145. self.ori_turbine_pic = ori_turbine_pic
  146. self.turbine_diff = turbine_diff
  147. diff_change = []
  148. for diff_i in turbine_diff:
  149. single_diff_change = []
  150. for diff_i_i in diff_i:
  151. if diff_i_i > 0:
  152. single_diff_change.append(1)
  153. elif diff_i_i < 0:
  154. single_diff_change.append(-1)
  155. else:
  156. single_diff_change.append(0)
  157. diff_change.append(single_diff_change)
  158. self.diff_change = diff_change
  159. self.ori_turbine_fft = [self.turbine_fft(i + 1) for i in range(len(self.ori_turbine_pic))]
  160. # 平滑
  161. self.turbine_smooth(window_size=21)
  162. def paint_map(self):
  163. """
  164. 绘制经纬度地图
  165. :return:
  166. """
  167. lats = self.info['纬度'].values
  168. lons = self.info['经度'].values
  169. map = Basemap()
  170. # 绘制海岸线和国家边界
  171. map.drawcoastlines()
  172. map.drawcountries()
  173. # 绘制经纬度坐标
  174. map.drawmeridians(range(0, 360, 30))
  175. map.drawparallels(range(-90, 90, 30))
  176. # 绘制点
  177. x, y = map(lons, lats)
  178. map.plot(x, y, 'bo', markersize=10)
  179. # 显示图表
  180. plt.show()
  181. def paint_power15min(self):
  182. """
  183. 绘制15分钟功率曲线
  184. :return:
  185. """
  186. plt.plot(self.power_15min['C_REAL_VALUE'])
  187. # 设置图表标题和轴标签
  188. plt.title('Data Time Change Curve')
  189. plt.xlabel('Date')
  190. plt.ylabel('Value')
  191. # 显示图表
  192. plt.show()
  193. def paint_lats_lons(self):
  194. """
  195. 绘制经纬度图
  196. :return:
  197. """
  198. x = self.info['纬度'].values
  199. y = self.info['经度'].values
  200. # 绘制散点图
  201. fig, ax = plt.subplots()
  202. plt.scatter(x, y)
  203. for i, txt in enumerate(self.info['id'].values):
  204. ax.annotate(txt, (x[i], y[i]))
  205. # 设置图表标题和轴标签
  206. plt.xlabel('lats')
  207. plt.ylabel('lons')
  208. # 显示图表
  209. plt.show()
  210. def similarity_score(self, turbine_diff, threshold=0.5):
  211. """
  212. 使用余弦相似度计算相似度分数并返回相似度大于阈值的index矩阵
  213. :param turbine_diff: 需要计算相似的矩阵,数据格式n*m,n为数据条数,m为数据维数
  214. :param threshold: 相似度阈值
  215. :return: 返回相似计算后的矩阵
  216. """
  217. similarity = {i: [] for i in range(49)}
  218. similarity_index = {i: [] for i in range(49)}
  219. for turbine_i in range(49):
  220. for turbine_j in range(49):
  221. cos_similarity = compute_cos_similarity(turbine_diff[turbine_i], turbine_diff[turbine_j])
  222. similarity[turbine_i].append(cos_similarity)
  223. if cos_similarity > threshold:
  224. similarity_index[turbine_i].append(turbine_j)
  225. return similarity_index
  226. def paint_turbine(self, paint_default=True):
  227. """
  228. 绘制风机地理位置图
  229. :param paint_default:默认True,绘制聚类后每个类别的数据折线图
  230. :return: None
  231. """
  232. # y = self.info['纬度'].values
  233. # x = self.info['经度'].values
  234. #
  235. # fig, ax = plt.subplots(figsize=(15, 15))
  236. #
  237. # plt.scatter(x, y, c=self.cluster)
  238. # for i, txt in enumerate(self.info['C_ID'].values):
  239. # ax.annotate(txt, (x[i], y[i]))
  240. # 设置图表标题和轴标签
  241. # plt.xlabel('lons')
  242. # plt.ylabel('lats')
  243. # plt.legend()
  244. #
  245. # # 显示图表
  246. # plt.savefig('analysis_img/turbine_cluster.png')
  247. # plt.show()
  248. if paint_default:
  249. for i in range(max(self.cluster)):
  250. self.paint_turbine_k(i + 1)
  251. def turbine_smooth(self, window_size=50):
  252. """
  253. 使用滑动平均平滑数据。
  254. 参数:
  255. data -- 需要平滑的数据,numpy数组类型
  256. window_size -- 滑动窗口大小,整数类型
  257. 返回值:
  258. smooth_data -- 平滑后的数据,numpy数组类型
  259. """
  260. # weights = np.repeat(1.0, window_size) / window_size
  261. smooth_data = []
  262. for turbine_diff_i in self.turbine_diff:
  263. smooth_y = savgol_filter(turbine_diff_i, window_length=window_size, polyorder=3)
  264. smooth_data.append(smooth_y)
  265. # smooth_data.append(np.convolve(turbine_diff_i, weights, 'valid'))
  266. self.smooth_turbine_diff = smooth_data
  267. def paint_turbine_k(self, k):
  268. """
  269. 绘制第k聚类的风机数据折线图
  270. :param k:
  271. :return:
  272. """
  273. pic_label = []
  274. y = []
  275. plt.figure(figsize=(20, 10))
  276. cmap = plt.get_cmap('viridis')
  277. for i, item in enumerate(self.cluster):
  278. if item == k:
  279. pic_label.append('turbine-' + str(self.turbine_id[i]))
  280. y.append(self.ori_turbine_fft[i])
  281. for i in range(len(y)):
  282. color = cmap(i / 10)
  283. plt.plot([j for j in range(len(y[i]))], y[i], color=color, label=pic_label[i])
  284. # 添加标签和标题
  285. plt.xlabel('x')
  286. plt.ylabel('y')
  287. plt.title('Cluster {}'.format(k))
  288. # 添加图例
  289. plt.legend()
  290. # 显示图形
  291. plt.savefig('analysis_img/cluster/cluster_{}.png'.format(k))
  292. plt.show()
  293. def turbine_fft(self, k):
  294. """
  295. 对第k台原始风机数据进行傅里叶变换,并绘制变换前后曲线
  296. :param k: 数据读入时的风机顺序index,从1开始
  297. :return: 傅里叶变换清洗后的数据,数据格式
  298. """
  299. y = self.ori_turbine_pic
  300. t = np.linspace(0, 1, self.data_length)
  301. signal = y[k - 1]
  302. # 进行傅里叶变换
  303. freq = np.fft.fftfreq(len(signal), t[1] - t[0])
  304. spectrum = np.fft.fft(signal)
  305. spectrum_abs = np.abs(spectrum)
  306. threshold = np.percentile(spectrum_abs, 98)
  307. indices = spectrum_abs > threshold
  308. spectrum_clean = indices * spectrum
  309. # 进行傅里叶逆变换
  310. signal_clean = np.fft.ifft(spectrum_clean)
  311. # plt.figure(figsize=(20, 10))
  312. #
  313. # # 绘制时域信号
  314. # plt.subplot(4, 1, 1)
  315. # plt.plot(t, signal)
  316. # plt.title(k)
  317. #
  318. # # 绘制频域信号
  319. # plt.subplot(4, 1, 2)
  320. # plt.plot(freq, np.abs(spectrum))
  321. #
  322. # # 绘制过滤后的频域信号
  323. # plt.subplot(4, 1, 3)
  324. # plt.plot(freq, np.abs(spectrum_clean))
  325. #
  326. # # 绘制过滤后的时域信号
  327. # plt.subplot(4, 1, 4)
  328. # plt.plot(t, signal_clean)
  329. #
  330. # plt.savefig('analysis_img/fft/{}_turbine_fft.png'.format(k))
  331. # plt.show()
  332. return signal_clean
  333. def paint_double(self, i, j):
  334. """
  335. 绘制两台风机的数据变换对比
  336. :param i: 风机数据读入时数据编号,从1开始
  337. :param j: 风机数据读入时数据编号,从1开始
  338. :return:
  339. """
  340. y = self.ori_turbine_fft
  341. x = [index for index in range(self.data_length)]
  342. data_i = y[i - 1]
  343. data_j = y[j - 1]
  344. plt.figure(figsize=(20, 10))
  345. plt.plot(x, data_i, label='turbine {}'.format(self.turbine_id[i - 1]), linestyle='solid')
  346. plt.plot(x, data_j, label='turbine {}'.format(self.turbine_id[j - 1]), linestyle='dashed')
  347. plt.title('{} and {}'.format(i, j))
  348. plt.legend()
  349. plt.savefig('analysis_img/{}_{}_turbine.png'.format(self.turbine_id[i - 1], self.turbine_id[j - 1]))
  350. plt.show()
  351. def process_ori_data(self):
  352. """
  353. 对原始数据进行处理,聚类和绘图
  354. :return:
  355. """
  356. self.turbine_clusters(self.ori_turbine_fft)
  357. self.paint_turbine()
  358. def turbine_clusters(self, data=None):
  359. """
  360. 风机数据聚类,聚类信息保存在self.cluster中
  361. :param data: 默认为空,也可以使用其他数据聚类,并体现在绘图中,
  362. 数据格式:二维数据n*m,n为数据条数,m为每条数据维数
  363. :return: None
  364. """
  365. if data is None:
  366. cluster = hierarchical_clustering(self.turbine_diff, threshold=1.4,
  367. similarity_func=compute_pearsonr) # 层次聚类
  368. else:
  369. cluster = hierarchical_clustering(data, threshold=1.2,
  370. similarity_func=compute_pearsonr)
  371. self.cluster = cluster
  372. # 在这里保存cluster变量
  373. from cluster_power import cluster_power_list_file, cluster_power_list_folder
  374. output_path = '../data-process/data/cluster_power/'
  375. cluster_power_list_file(self.cluster, self.turbine_id,
  376. input_path='../data-process/data/output_filtered_csv_files/', output_path=output_path)
  377. cluster_power_list_folder(self.cluster, self.turbine_id, input_path='../data-process/data/continuous_data/',
  378. output_path=output_path)
  379. data_analysis = DataAnalysis(data_length=9773,
  380. data_start=0,
  381. data_end=9773)
  382. data_analysis.process_ori_data()
  383. data_analysis.paint_double(20, 21)