limited_power_curve_wind.py 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. import copy
  2. import os
  3. import pandas as pd
  4. import numpy as np
  5. import matplotlib.pyplot as plt
  6. import pickle
  7. current_path = os.path.dirname(__file__)
  8. class LimitPower(object):
  9. def __init__(self, logger, args, weather_power):
  10. self.logger = logger
  11. self.args = args
  12. self.opt = self.args.parse_args_and_yaml()
  13. self.weather_power = weather_power
  14. self.step = self.opt.usable_power['step']
  15. self.segs = np.array([x * self.step for x in range(1, 50)]) # 对风速以50为间隔进行分段
  16. self.xs = np.array([self.segs[i - 1] + x if i > 0 else self.step / 2 for i, x in
  17. enumerate([self.step / 2 for _ in self.segs])]) # 分段的中间点
  18. self.polynomial = None
  19. self.width = 0
  20. self.max_ws = 50
  21. def segment_statis(self):
  22. """
  23. 对机头风速-实际功率进行分段处理,获取分度的中位点,四分位间距和斜率
  24. :return: glob_rp 总辐射分段
  25. """
  26. glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率
  27. for index, row in self.weather_power.iterrows():
  28. ws_ = row[self.opt.usable_power["env"]]
  29. rp = row['C_REAL_VALUE']
  30. for i, seg in enumerate(self.segs):
  31. if ws_ <= seg:
  32. glob_rp.setdefault(self.xs[i], []).append(rp)
  33. break
  34. rms = []
  35. for i, x in enumerate(self.xs):
  36. rps = glob_rp.get(x)
  37. if rps is None:
  38. continue
  39. rps = np.array(rps)
  40. up = self.opt.usable_power['up_fractile']
  41. down = self.opt.usable_power['down_fractile']
  42. offset = 0
  43. while True:
  44. index = i-1 if i > 0 else 0
  45. while (self.xs[index] in rms or self.xs[index] not in glob_rp) and index >0:
  46. index -= 1
  47. x_l = self.xs[index] if index > 0 else 0
  48. q2_l = glob_rp[self.xs[index]][0] if index > 0 else 0
  49. down = down + offset
  50. if down > up:
  51. rms.append(x)
  52. self.logger.info("删除的坐标点为:{}".format(x))
  53. break
  54. q1 = np.percentile(rps, down) # 下四分位点
  55. q2 = round(np.percentile(rps, down+(up-down)/2), 3) # 中位点
  56. q3 = np.percentile(rps, up) # 上四分为点
  57. # q2 = np.around(np.mean(rps[(rps >= q1) & (rps <= q3)]), 3)
  58. iqr = q3 - q1 # 四分位间距
  59. k2 = round((q2-q2_l)/(x-x_l), 3) # 趋势斜率
  60. # std = np.around(np.std(rps[(rps >= q1) & (rps <= q3)]), 3)
  61. # mean = np.around(np.mean(rps), 3) # 实际功率均值
  62. # std = np.around(np.std(rps), 3) # 实际功率标准差
  63. # print("看看q2={},mean={}".format(q2, mean))
  64. if k2 >= 0:
  65. glob_rp[x] = [q2, iqr] # 更新dict
  66. break
  67. else:
  68. offset += 1
  69. glob_rp = {k: glob_rp[k] for k in glob_rp.keys() if k not in rms}
  70. glob_rp = {k: glob_rp[k] for k in sorted(glob_rp.keys())}
  71. return glob_rp
  72. def mapping_relation(self, glob_rp):
  73. degree = self.opt.usable_power['degree']
  74. xs = list(glob_rp.keys())
  75. ys = [y[0] for y in glob_rp.values()]
  76. self.width = np.median(np.array([y[1] for y in glob_rp.values()]))
  77. coefficients = np.polyfit(xs, ys, degree)
  78. self.polynomial = np.poly1d(coefficients)
  79. self.max_ws = max(xs)
  80. # y_fit = self.polynomial(xs)
  81. # plt.scatter(xs, ys, label='Data', color='red')
  82. # plt.plot(xs, y_fit, label='Fitted polynomial', color='blue')
  83. # plt.plot(xs, y_fit+self.width/2, label='up polynomial', color='purple')
  84. # plt.plot(xs, y_fit-self.width/2, label='down polynomial', color='green')
  85. # plt.legend()
  86. # plt.xlabel('x')
  87. # plt.ylabel('y')
  88. # plt.title(f'Polynomial Fit (degree {degree})')
  89. # plt.show()
  90. def saveVar(self, path, data):
  91. os.makedirs(os.path.dirname(path), exist_ok=True)
  92. with open(path, 'wb') as file:
  93. pickle.dump(data, file)
  94. def filter_unlimited_power(self, ws, real_power):
  95. """
  96. 预测可用功主方法
  97. :param zfs: 要预测可用功率的总辐射
  98. :param k: 斜率
  99. :param b: 偏移量
  100. :return: 预测的可用功率
  101. """
  102. # coe = self.opt.usable_power['outliers_threshold']
  103. # seg = self.xs[np.argmax(self.segs >= ws)]
  104. up_offset = self.opt.usable_power['up_offset']
  105. down_offset = self.opt.usable_power['down_offset']
  106. high = self.polynomial(ws) + self.width/up_offset if self.polynomial(ws) + self.width/up_offset < self.opt.cap else self.opt.cap
  107. low = self.polynomial(ws) - self.width/down_offset if self.polynomial(ws) - self.width/down_offset > 0 else 0
  108. if low <= real_power <= high:
  109. return True
  110. else:
  111. return False
  112. def clean_limited_power(self, name, cluster=False):
  113. if cluster is True:
  114. glob_rp = self.segment_statis()
  115. self.saveVar(os.path.dirname(current_path) + '/var/glob_rp.pickle', glob_rp)
  116. self.mapping_relation(glob_rp)
  117. new_weather_power, number = [], 0
  118. # fig, ax = plt.subplots()
  119. for index, row in self.weather_power.iterrows():
  120. zfs = row[self.opt.usable_power["env"]]
  121. rp = row['C_REAL_VALUE']
  122. if zfs < 0 or rp < 0:
  123. continue
  124. if self.filter_unlimited_power(zfs, rp) and zfs <= self.max_ws:
  125. row['c'] = 'red'
  126. new_weather_power.append(row)
  127. else:
  128. row['c'] = 'blue'
  129. new_weather_power.append(row)
  130. new_weather_power = pd.concat(new_weather_power, axis=1).T
  131. new_weather_power.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
  132. plt.savefig(current_path + '/figs/测风法{}.png'.format(name))
  133. new_weather_power = new_weather_power[new_weather_power['c'] == 'red']
  134. number = len(new_weather_power)
  135. self.logger.info("未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
  136. self.logger.info("清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2)))
  137. return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE', self.opt.usable_power['env']]]
  138. def clean_limited_power_by_signal(self, name):
  139. weather_power1 = self.weather_power.copy()
  140. weather_power1["signal"] = weather_power1.apply(
  141. lambda x: self.signal_result(x["C_IS_RATIONING_BY_MANUAL_CONTROL"], x["C_IS_RATIONING_BY_AUTO_CONTROL"]),
  142. axis=1)
  143. weather_power1['c'] = weather_power1.apply(lambda x: 'cornflowerblue' if bool(x["signal"]) is True else 'pink',
  144. axis=1)
  145. weather_power1.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
  146. plt.savefig(current_path + '/figs/信号法{}.png'.format(name))
  147. weather_power1 = weather_power1[weather_power1['signal'] == False]
  148. self.logger.info("信号法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
  149. self.logger.info("信号法-清除限电后保留的点有:" + str(len(weather_power1)) + " 占比:" + str(
  150. round(len(weather_power1) / len(self.weather_power), 2)))
  151. return weather_power1.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE', self.opt.usable_power['env']]]
  152. def signal_result(self, manual, auto):
  153. if int(manual) == 0:
  154. if int(auto) == 0:
  155. return False
  156. else:
  157. return True
  158. else:
  159. if int(auto) == 1:
  160. return True
  161. else:
  162. return False
  163. if __name__ == '__main__':
  164. from logs import Log
  165. from config import myargparse
  166. log = Log().logger
  167. # 实例化配置类
  168. args = myargparse(discription="场站端配置", add_help=False)
  169. power = pd.read_csv('./data/power.csv')
  170. weather = pd.read_csv('./data/tower-1-process.csv')
  171. weather_power = pd.merge(weather, power, on='C_TIME') # 联立数据
  172. lp = LimitPower(log, args, weather_power)
  173. # glob_rp = lp.segment_statis()
  174. # lp.mapping_relation(glob_rp)
  175. lp.clean_limited_power('测试1')
  176. # glob_rp = {k: glob_rp[k] for k in sorted(glob_rp.keys())}
  177. # keys = list(glob_rp.keys())
  178. # values = [v[0] for v in glob_rp.values()]
  179. # import matplotlib.pyplot as plt
  180. # fig, ax = plt.subplots()
  181. # ax.plot(keys, values)
  182. # plt.show()