inputData.py 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. import pandas as pd
  2. import datetime, time
  3. import yaml
  4. import os
  5. import pymysql
  6. from sqlalchemy import create_engine
  7. import pytz
  8. from getdata.data_cleaning import cleaning, rm_duplicated
  9. import utils.savedata
  10. current_path = os.path.dirname(__file__)
  11. dataloc = current_path + '/data/'
  12. weatherloc = [1]
  13. def readData(name):
  14. """
  15. 读取数据
  16. :param name: 名字
  17. :return:
  18. """
  19. path = dataloc + r"/" + name
  20. return pd.read_csv(path)
  21. def saveData(name, data):
  22. """
  23. 存放数据
  24. :param name: 名字
  25. :param data: 数据
  26. :return:
  27. """
  28. path = dataloc + r"/" + name
  29. os.makedirs(os.path.dirname(path), exist_ok=True)
  30. data.to_csv(path, index=False)
  31. def timestamp_to_datetime(ts):
  32. local_timezone = pytz.timezone('Asia/Shanghai')
  33. if type(ts) is not int:
  34. raise ValueError("timestamp-时间格式必须是整型")
  35. if len(str(ts)) == 13:
  36. dt = datetime.datetime.fromtimestamp(ts/1000, tz=pytz.utc).astimezone(local_timezone)
  37. return dt
  38. elif len(str(ts)) == 10:
  39. dt = datetime.datetime.fromtimestamp(ts, tz=pytz.utc).astimezone(local_timezone)
  40. return dt
  41. else:
  42. raise ValueError("timestamp-时间格式错误")
  43. def timestr_to_timestamp(time_str):
  44. """
  45. 将时间戳或时间字符串转换为datetime.datetime类型
  46. :param time_data: int or str
  47. :return:datetime.datetime
  48. """
  49. if isinstance(time_str, str):
  50. if len(time_str) == 10:
  51. dt = datetime.datetime.strptime(time_str, '%Y-%m-%d')
  52. return int(round(time.mktime(dt.timetuple())) * 1000)
  53. elif len(time_str) in {17, 18, 19}:
  54. dt = datetime.datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S') # strptime字符串解析必须严格按照字符串中的格式
  55. return int(round(time.mktime(dt.timetuple())) * 1000) # 转换成毫秒级的时间戳
  56. else:
  57. raise ValueError("时间字符串长度不满足要求!")
  58. else:
  59. return time_str
  60. class DataBase(object):
  61. def __init__(self, begin, end, database):
  62. self.begin = begin
  63. self.end = end - pd.Timedelta(minutes=15)
  64. self.begin_stamp = timestr_to_timestamp(str(begin))
  65. self.end_stamp = timestr_to_timestamp(str(self.end))
  66. self.database = database
  67. def clear_data(self):
  68. """
  69. 删除所有csv
  70. :return:
  71. """
  72. # 设置文件夹路径
  73. import glob
  74. import os
  75. folder_path = dataloc
  76. # 使用 glob 获取所有的 .csv 文件路径
  77. csv_files = glob.glob(os.path.join(folder_path, '**/*.csv'), recursive=True)
  78. # 遍历所有 .csv 文件并删除
  79. for file_path in csv_files:
  80. os.remove(file_path)
  81. # self.logger.info("清除所有csv文件")
  82. def create_database(self):
  83. """
  84. 创建数据库连接
  85. :param database: 数据库地址
  86. :return:
  87. """
  88. engine = create_engine(self.database)
  89. return engine
  90. def exec_sql(self, sql, engine):
  91. """
  92. 从数据库获取数据
  93. :param sql: sql语句
  94. :param engine: 数据库对象
  95. :return:
  96. """
  97. df = pd.read_sql_query(sql, engine)
  98. return df
  99. def split_time(self, data):
  100. data['C_TIME'] = pd.to_datetime(data["C_TIME"])
  101. data.set_index('C_TIME', inplace=True)
  102. data = data.sort_index().loc[self.begin: self.end]
  103. data.reset_index(drop=False, inplace=True)
  104. return data
  105. def get_process_NWP(self):
  106. """
  107. 从数据库中获取NWP数据,并进行简单处理
  108. :param database:
  109. :return:
  110. """
  111. # NPW数据
  112. engine = self.create_database()
  113. sql_NWP = "select C_PRE_TIME,C_T,C_RH,C_PRESSURE, C_SWR," \
  114. "C_DIFFUSE_RADIATION, C_DIRECT_RADIATION, " \
  115. "C_WD10,C_WD30,C_WD50,C_WD70,C_WD80,C_WD90,C_WD100,C_WD170," \
  116. "C_WS10,C_WS30,C_WS50,C_WS70,C_WS80,C_WS90,C_WS100,C_WS170 from t_nwp " \
  117. " where C_PRE_TIME between {} and {}".format(self.begin_stamp, self.end_stamp) # 光的NWP字段
  118. NWP = self.exec_sql(sql_NWP, engine)
  119. NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].apply(timestamp_to_datetime)
  120. NWP = NWP.rename(columns={'C_PRE_TIME': 'C_TIME'})
  121. NWP = cleaning(NWP, 'NWP')
  122. # NWP = self.split_time(NWP)
  123. NWP['C_TIME'] = NWP['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  124. utils.savedata.saveData("NWP.csv", NWP)
  125. print("导出nwp数据")
  126. return NWP
  127. def get_process_weather(self):
  128. """
  129. 获取环境检测仪数据
  130. :param database:
  131. :return:
  132. """
  133. engine = self.create_database()
  134. print("现有环境监测仪:{}".format(weatherloc))
  135. for i in weatherloc:
  136. # 删除没用的列
  137. drop_colmns = ["C_ID", "C_EQUIPMENT_NO", "C_DATA1","C_DATA2","C_DATA3","C_DATA4","C_DATA5","C_DATA6","C_DATA7","C_DATA8","C_DATA9","C_DATA10", "C_STATUS", "C_IS_GENERATED","C_ABNORMAL_CODE"]
  138. get_colmns = []
  139. # 查询表的所有列名
  140. result_set = self.exec_sql("SHOW COLUMNS FROM t_weather_station_status_data", engine)
  141. for name in result_set.iloc[:,0]:
  142. if name not in drop_colmns:
  143. get_colmns.append(name)
  144. all_columns_str = ", ".join([f'{col}' for col in get_colmns])
  145. weather_sql = "select " + all_columns_str + " from t_weather_station_status_data where C_EQUIPMENT_NO="+ str(i) + " and C_TIME between '{}' and '{}'".format(self.begin, self.end)
  146. weather = self.exec_sql(weather_sql, engine)
  147. weather['C_TIME'] = pd.to_datetime(weather['C_TIME'])
  148. # weather = self.split_time(weather)
  149. utils.savedata.saveData("/weather-{}.csv".format(i), weather)
  150. print("环境监测仪{}导出数据".format(i))
  151. def get_process_power(self):
  152. """
  153. 获取整体功率数据
  154. :param database:
  155. :return:
  156. """
  157. engine = self.create_database()
  158. sql_cap = "select C_CAPACITY from t_electric_field"
  159. cap = self.exec_sql(sql_cap, engine)['C_CAPACITY']
  160. sql_power = "select C_TIME, C_REAL_VALUE, C_ABLE_VALUE, C_IS_RATIONING_BY_MANUAL_CONTROL, C_IS_RATIONING_BY_AUTO_CONTROL" \
  161. " from t_power_station_status_data where C_TIME between '{}' and '{}'".format(self.begin, self.end)
  162. # if self.opt.usable_power["clean_power_by_signal"]:
  163. # sql_power += " and C_IS_RATIONING_BY_MANUAL_CONTROL=0 and C_IS_RATIONING_BY_AUTO_CONTROL=0"
  164. powers = self.exec_sql(sql_power, engine)
  165. mask1 = powers.loc[:, 'C_REAL_VALUE'].astype(float) > float(cap)
  166. mask = powers['C_REAL_VALUE'] == -99
  167. mask = mask | mask1
  168. print("实际功率共{}条,要剔除功率有{}条".format(len(powers), mask.sum()))
  169. powers = powers[~mask]
  170. print("剔除完后还剩{}条".format(len(powers)))
  171. powers.reset_index(drop=True, inplace=True)
  172. binary_map = {b'\x00': 0, b'\x01': 1}
  173. powers['C_IS_RATIONING_BY_AUTO_CONTROL'] = powers['C_IS_RATIONING_BY_AUTO_CONTROL'].map(binary_map)
  174. powers = rm_duplicated(powers)
  175. utils.savedata.saveData("power.csv", powers)
  176. def get_process_dq(self):
  177. """
  178. 获取短期预测结果
  179. :param database:
  180. :return:
  181. """
  182. engine = self.create_database()
  183. sql_dq = "select C_FORECAST_TIME AS C_TIME, C_FP_VALUE from t_forecast_power_short_term " \
  184. "where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
  185. dq = self.exec_sql(sql_dq, engine)
  186. # dq['C_TIME'] = pd.to_datetime(dq['C_TIME'], unit='ms')
  187. dq['C_TIME'] = dq['C_TIME'].apply(timestamp_to_datetime)
  188. # dq = dq[dq['C_FORECAST_HOW_LONG_AGO'] == 1]
  189. # dq.drop('C_FORECAST_HOW_LONG_AGO', axis=1, inplace=True)
  190. dq = cleaning(dq, 'dq', cols=['C_FP_VALUE'])
  191. dq['C_TIME'] = dq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  192. utils.savedata.saveData("dq.csv", dq)
  193. print("导出dq数据")
  194. def get_process_cdq(self):
  195. """
  196. 获取超短期预测结果
  197. :param database:
  198. :return:
  199. """
  200. engine = self.create_database()
  201. sql_cdq = "select C_FORECAST_TIME AS C_TIME, C_ABLE_VALUE, C_FORECAST_HOW_LONG_AGO from " \
  202. "t_forecast_power_ultra_short_term_his" \
  203. " where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
  204. cdq = self.exec_sql(sql_cdq, engine)
  205. cdq['C_TIME'] = cdq['C_TIME'].apply(timestamp_to_datetime)
  206. cdq = cleaning(cdq, 'cdq', cols=['C_ABLE_VALUE'], dup=False)
  207. # cdq = cdq[cdq['C_FORECAST_HOW_LONG_AGO'] == int(str(self.opt.predict_point)[1:])]
  208. cdq['C_TIME'] = cdq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
  209. utils.savedata.saveData("cdq.csv", cdq)
  210. def indep_process(self):
  211. """
  212. 进一步数据处理:时间统一处理等
  213. :return:
  214. """
  215. # 环境监测仪数据处理
  216. for i in weatherloc:
  217. weather = utils.savedata.readData("/weather-{}.csv".format(i))
  218. weather = cleaning(weather, 'weather', cols=['C_GLOBALR', 'C_DIRECTR', 'C_DIFFUSER', 'C_RH', 'C_AIRT', 'C_P', 'C_WS', 'C_WD'])
  219. utils.savedata.saveData("/weather-{}-process.csv".format(i), weather)
  220. def data_process(self):
  221. """
  222. 数据导出+初步处理的总操控代码
  223. :param database:
  224. :return:
  225. """
  226. # self.clear_data()
  227. try:
  228. self.get_process_power()
  229. self.get_process_dq()
  230. # self.get_process_cdq()
  231. self.get_process_NWP()
  232. self.get_process_weather()
  233. self.indep_process()
  234. except Exception as e:
  235. print("导出数据出错:{}".format(e.args))