123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2024/6/21 13:49
- # file: turbine_cleaning.py
- # author: David
- # company: shenyang JY
- import os
- import pandas as pd
- from datetime import timedelta
- # ——————————————————————————机头风速-99和连续异常值清洗代码——————————————————————————————
- def mark_abnormal_streaks(df, columns, min_streak):
- abnormal_mask = pd.Series(False, index=df.index)
- streak_start = None
- for i in range(len(df)):
- if i == 0 or any(df.at[i - 1, col] != df.at[i, col] for col in columns):
- streak_start = i
- if i - streak_start >= min_streak - 1:
- abnormal_mask[i - min_streak + 1:i + 1] = True
- return abnormal_mask
- def remove_abnormal_values(df, N):
- # 标记C_ACTIVE_POWER为-99的行为异常值
- abnormal_mask1 = df['C_ACTIVE_POWER'] == -99
- count_abnormal1 = abnormal_mask1.sum()
- # 标记C_WS, A, B连续5行不变的行为异常值
- columns = ['C_WS', 'C_WD', 'C_ACTIVE_POWER']
- abnormal_mask2 = mark_abnormal_streaks(df, columns, N)
- count_abnormal2 = abnormal_mask2.sum()
- # 获得所有异常值的布尔掩码
- abnormal_mask = abnormal_mask1 | abnormal_mask2
- # 获取连续异常值具体数值
- removed_continuous_values = {column: df.loc[abnormal_mask2, column].unique() for column in columns}
- # 剔除异常值
- df_clean = df[~abnormal_mask]
- total_removed = abnormal_mask.sum()
- return df_clean, count_abnormal1, count_abnormal2, total_removed, removed_continuous_values
- def process_csv_files(input_dir, output_dir, turbines_id, M,N): # MBD:没有考虑时间重复
- if not os.path.exists(output_dir):
- os.makedirs(output_dir)
- for i in turbines_id:
- input_file = os.path.join(input_dir, f"turbine-{i}.csv")
- output_file = os.path.join(output_dir, f"turbine-{i}.csv")
- # 读取csv文件
- df = pd.read_csv(input_file)
- # 剔除异常值,并获取异常值统计信息
- df_clean, count_abnormal1, count_abnormal2, total_removed, removed_continuous_values = remove_abnormal_values(df,N)
- # 输出异常值统计信息
- print(f"处理文件:{input_file}")
- print(f"剔除 -99 点异常值数量:{count_abnormal1}")
- print(f"剔除连续异常值数量:{count_abnormal2}")
- print(f"总共剔除数据量:{total_removed}")
- print(f"剔除的连续异常值具体数值:{removed_continuous_values}\n")
- # 保存处理过的CSV文件
- df_clean.to_csv(output_file, index=False)
- # ——————————————————————————风机单机时间对齐——————————————————————————————
- def TimeMerge(input_dir, output_dir, turbines_id, M):
- # 读取所有CSV文件
- files = [os.path.join(input_dir, f"turbine-{i}.csv") for i in turbines_id]
- dataframes = [pd.read_csv(f) for f in files]
- # 获取C_TIME列的交集
- c_time_intersection = set(dataframes[0]["C_TIME"])
- for df in dataframes[1:]:
- c_time_intersection.intersection_update(df["C_TIME"])
- # 只保留C_TIME交集中的数据
- filtered_dataframes = [df[df["C_TIME"].isin(c_time_intersection)] for df in dataframes]
- # 将每个过滤后的DataFrame写入新的CSV文件
- os.makedirs(output_dir, exist_ok=True)
- turbines_all, names = [], ['C_TIME']
- for (filtered_df, i) in zip(filtered_dataframes, turbines_id):
- # if i == 144:
- # filtered_df['C_ACTIVE_POWER'] /= 1000
- filtered_df.to_csv(os.path.join(output_dir, f"turbine-{i}.csv"), index=False)
- names.append('C_ACTIVE_POWER_{}'.format(i))
- turbines_all.append(filtered_df['C_ACTIVE_POWER'].reset_index(drop=True))
- turbines_all.insert(0, filtered_dataframes[0]['C_TIME'].reset_index(drop=True))
- turbines_all = pd.concat(turbines_all, axis=1)
- turbines_all.columns = names
- turbines_all.to_csv(os.path.join(output_dir, f"turbines.csv"), index=False)
- # ——————————————————————————风机缺失点处理——————————————————————————————
- def MissingPointProcessing(input_dir,output_dir, turbines_id, M,N):
- # 存储数据的列表
- # 读取M个文件
- for k in turbines_id:
- file_name = input_dir + '/' + f"turbine-{k}.csv"
- # file_name = os.path.join(input_dir, f"turbine-{k}.csv")
- # 读取CSV文件
- data = pd.read_csv(file_name, parse_dates=['C_TIME'])
- # 计算时间差
- data['time_diff'] = data['C_TIME'].diff().dt.total_seconds()
- # 找出缺失的时间点
- missing_data_points = data[data['time_diff'] > 900]
- # 存储填充的时间和值
- filled_data = []
- # 输出缺失的开始时刻和数量
- print("缺失的开始时刻:")
- for index, row in missing_data_points.iterrows():
- missing_start = row['C_TIME'] - timedelta(seconds=row['time_diff'])
- missing_count = int(row['time_diff'] // 900) - 1
- # 如果缺失的点数小于N个,则进行填充 MBD:填充代码比较啰嗦
- if missing_count <= N:
- prev_values = data.iloc[index - 1][['C_WS', 'C_WD', 'C_ACTIVE_POWER']]
- next_values = row[['C_WS', 'C_WD', 'C_ACTIVE_POWER']]
- for i in range(1, missing_count + 1):
- t = i / (missing_count + 1)
- filled_time = missing_start + timedelta(minutes=15 * i)
- filled_values = {
- 'C_TIME': filled_time,
- 'C_WS': prev_values['C_WS'] + (next_values['C_WS'] - prev_values['C_WS']) * t,
- 'C_WD': prev_values['C_WD']+(next_values['C_WD']-prev_values['C_WD'])*t,
- 'C_ACTIVE_POWER': prev_values['C_ACTIVE_POWER'] + (
- next_values['C_ACTIVE_POWER'] - prev_values['C_ACTIVE_POWER']) * t,
- }
- # 将角度值限制在-180到180的范围内
- filled_values['C_WD'] = (filled_values['C_WD'] + 180) % 360 - 180
- filled_data.append(filled_values)
- print(f"填充的时间: {filled_time}, 填充的值: {filled_values}")
- print(f"{missing_start} - 缺失的点的数量: {missing_count}")
- # 将填充的数据插入原始数据中
- filled_df = pd.DataFrame(filled_data)
- data = pd.concat([data, filled_df], ignore_index=True)
- # 对数据按时间排序并重置索引
- data = data.sort_values(by='C_TIME').reset_index(drop=True)
- # 输出总缺失点数
- missing_data_points = data[data['time_diff'] > 900]
- print(f"总缺失点数: {int(missing_data_points['time_diff'].sum() // 900) - len(missing_data_points)}")
- data.drop(columns=['time_diff'], inplace=True)
- os.makedirs(output_dir, exist_ok=True)
- output_path_name = os.path.join(output_dir, f"turbine-{k}.csv")
- print(output_path_name)
- # 保存插值后的文件
- data.to_csv(output_path_name, index=False)
|