123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- import pandas as pd
- import os
- import numpy as np
- np.random.seed(42)
- import matplotlib
- matplotlib.use('Agg')
- import matplotlib.pyplot as plt
- current_path = os.path.dirname(__file__)
- class LimitPower(object):
- def __init__(self, logger, args, weather_power):
- self.logger = logger
- self.args = args
- self.opt = self.args.parse_args_and_yaml()
- self.weather_power = weather_power
- def segment_statis(self):
- """
- 对总辐射-实际功率进行分段处理,获取分度的中位点,四分位间距和斜率
- :return: glob_rp 总辐射分段
- """
- segs = [x for x in range(50, 2000, 100)] # 对辐照度以100为间隔进行分段
- xs = [segs[i-1]+x if i>0 else 25 for i, x in enumerate([50 for _ in segs])] # 分段的中间点
- glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率
- for index, row in self.weather_power.iterrows():
- glob_ = row[self.opt.usable_power["env"]]
- rp = row['C_REAL_VALUE']
- for i, seg in enumerate(segs):
- if glob_ <= seg and not (i > 0 and rp < 1):
- glob_rp.setdefault(xs[i], []).append(rp)
- break
- for i, x in enumerate(xs):
- rps = glob_rp.get(x)
- if rps is None:
- glob_rp = {k: v for k, v in glob_rp.items() if k not in xs[xs.index(x):]}
- break
- x_l = xs[i-1] if i > 0 else 0
- q2_l = glob_rp[xs[i-1]][0] if i > 0 else 0
- q1 = np.percentile(rps, self.opt.usable_power['down_fractile']) # 实际功率下四分位点
- q2 = np.percentile(rps, 50) # 实际功率中位点
- q3 = np.percentile(rps, self.opt.usable_power['up_fractile']) # 实际功率上四分位点
- iqr = q3 -q1 # 四分位间距
- k1 = round(q2/x, 5) # 整体斜率
- k2 = round((q2-q2_l)/(x-x_l), 5) # 趋势斜率,相对上一个中位点
- glob_rp[x] = [q2, iqr, k1, k2] # 更新dict
- return glob_rp
- def mapping_relation(self, glob_rp):
- """
- 拟合分段处理后的斜率和偏移量
- :param glob_rp: 总辐射分段
- :return: k_final 斜率 bias 实际功率的分布宽度, glob_rp 总辐射分段
- """
- ks, iqrs, delete_x, tag_x = [], [], [], [] # ks所有分段斜率集合,iqrs所有分段间距集合,delete_x删除的x坐标集合
- for x, values in glob_rp.items():
- k1 = values[-2]
- k2 = values[-1]
- iqrs.append(values[-3])
- if k1 > 0 and k2 > 0: # 清除趋势小于等于0的斜率
- ks.append(k1)
- tag_x.append(x)
- else:
- delete_x.append(x)
- # print("删除的斜率:", k1, k2)
- bias = round(np.median(iqrs), 3) # 中位点
- # print("++++1", ks)
- mean = np.mean(ks) # 均值
- std = np.std(ks) # 标准差
- ks = np.array(ks)
- z_score = (ks-mean)/std # z均值
- # print("----", z_score)
- outliers = np.abs(z_score) > self.opt.usable_power['outliers_threshold'] # 超过阈值为离群点
- ks = ks[~outliers] # 消除离群点
- delete_x1 = list(np.array(tag_x)[outliers]) # 清除大于阈值的离群点
- k_final = round(np.mean(ks), 5) # 对清洗后的斜率做平均
- # print("++++2:", ks)
- delete_x.extend(delete_x1)
- self.logger.info("拟合可用功率,删除的斜率:" + ' '.join([str(x) for x in delete_x]))
- glob_rp = {k: v for k, v in glob_rp.items() if k not in delete_x} # 清洗后剩下的分段点位
- return k_final, bias, glob_rp
- def filter_unlimited_power(self, zfs, real_power, k, b):
- """
- 预测可用功主方法
- :param zfs: 要预测可用功率的总辐射
- :param k: 斜率
- :param b: 偏移量
- :return: 预测的可用功率
- """
- high = k*zfs+b/2 if k*zfs+b/2 < self.opt.cap else self.opt.cap
- low = k*zfs-b/2 if k*zfs-b/2 > 0 else 0
- if low <= real_power <= high:
- return True
- else:
- return False
- def clean_limited_power(self, name, is_repair=False):
- if is_repair is True:
- glob_rp = self.segment_statis()
- k_final, bias, glob_rp = self.mapping_relation(glob_rp)
- self.opt.usable_power['k'] = float(k_final)
- self.opt.usable_power['bias'] = float(bias)
- new_weather_power = []
- for index, row in self.weather_power.iterrows():
- zfs = row[self.opt.usable_power["env"]]
- rp = row['C_REAL_VALUE']
- if self.filter_unlimited_power(zfs, rp, self.opt.usable_power['k'], self.opt.usable_power['bias'] * self.opt.usable_power['coe']):
- row['c'] = 'red'
- new_weather_power.append(row)
- else:
- row['c'] = 'blue'
- new_weather_power.append(row)
- new_weather_power = pd.concat(new_weather_power, axis=1).T
- new_weather_power.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
- plt.savefig(current_path + '/figs/测光法{}.png'.format(name))
- new_weather_power = new_weather_power[new_weather_power['c'] == 'red']
- number = len(new_weather_power)
- self.logger.info("测光法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
- self.logger.info("测光法-清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2)))
- return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']]
- def clean_limited_power_by_signal(self, name):
- weather_power1 = self.weather_power.copy()
- weather_power1["signal"] = weather_power1.apply(lambda x: self.signal_result(x["C_IS_RATIONING_BY_MANUAL_CONTROL"], x["C_IS_RATIONING_BY_AUTO_CONTROL"]), axis=1)
- weather_power1['c'] = weather_power1.apply(lambda x: 'cornflowerblue' if bool(x["signal"]) is True else 'pink', axis=1)
- weather_power1.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c')
- plt.savefig(current_path + '/figs/信号法{}.png'.format(name))
- weather_power1 = weather_power1[weather_power1['signal'] == False]
- self.logger.info("信号法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power)))
- self.logger.info("信号法-清除限电后保留的点有:" + str(len(weather_power1)) + " 占比:" + str(round(len(weather_power1) / len(self.weather_power), 2)))
- return weather_power1.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']]
- def signal_result(self, manual, auto):
- if int(manual) == 0:
- if int(auto) == 0:
- return False
- else:
- return True
- else:
- if int(auto) == 1:
- return True
- else:
- return False
- if __name__ == '__main__':
- power = pd.read_csv('2023-12-01至2023-12-23实际功率导出文件.csv', date_parser=['时间'])
- weather = pd.read_csv('2023-12-01至2023-12-23气象站数据导出文件.csv', date_parser=['时间'])
- weather_power = pd.merge(weather, power, on='时间') # 联立数据
- # glob_rp = segment_statis(weather_power)
- # k_final, bias, glob_rp = mapping_relation(glob_rp)
|