import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import pickle current_path = os.path.dirname(__file__) class LimitPower(object): def __init__(self, logger, args, weather_power): self.logger = logger self.args = args self.opt = self.args.parse_args_and_yaml() self.weather_power = weather_power self.step = self.opt.usable_power['step'] self.segs = np.array([x * self.step for x in range(1, 50)]) # 对风速以50为间隔进行分段 self.xs = np.array([self.segs[i - 1] + x if i > 0 else self.step / 2 for i, x in enumerate([self.step / 2 for _ in self.segs])]) # 分段的中间点 def segment_statis(self): """ 对机头风速-实际功率进行分段处理,获取分度的中位点,四分位间距和斜率 :return: glob_rp 总辐射分段 """ glob_rp = {} # dict: key 辐照度分段中间点 value 分段内的实际功率 for index, row in self.weather_power.iterrows(): ws_ = row[self.opt.usable_power["env"]] rp = row['C_REAL_VALUE'] for i, seg in enumerate(self.segs): if ws_ <= seg: glob_rp.setdefault(self.xs[i], []).append(rp) break for i, x in enumerate(self.xs): rps = glob_rp.get(x) if rps is None: continue mean = np.around(np.mean(rps), 3) # 实际功率均值 std = np.around(np.std(rps), 3) # 实际功率标准差 glob_rp[x] = [mean, std] # 更新dict return glob_rp def saveVar(self, path, data): os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, 'wb') as file: pickle.dump(data, file) def filter_unlimited_power(self, ws, real_power, glob_rp): """ 预测可用功主方法 :param zfs: 要预测可用功率的总辐射 :param k: 斜率 :param b: 偏移量 :return: 预测的可用功率 """ coe = self.opt.usable_power['outliers_threshold'] seg = self.xs[np.argmax(self.segs >= ws)] if seg in glob_rp: mean, std = glob_rp[seg][0], glob_rp[seg][1] high = mean + std*coe if mean + std*coe < self.opt.cap else self.opt.cap low = mean - std*coe if mean - std*coe > 0 else 0 if low <= real_power <= high: return True else: return False else: return True def clean_limited_power(self, name, cluster=False): glob_rp = self.segment_statis() if cluster is True: self.saveVar(os.path.dirname(current_path) + '/var/glob_rp.pickle', glob_rp) new_weather_power, number = [], 0 # fig, ax = plt.subplots() for index, row in self.weather_power.iterrows(): zfs = row[self.opt.usable_power["env"]] rp = row['C_REAL_VALUE'] if zfs < 0 or rp < 0: continue if self.filter_unlimited_power(zfs, rp, glob_rp): row['c'] = 'red' new_weather_power.append(row) else: row['c'] = 'blue' new_weather_power.append(row) new_weather_power = pd.concat(new_weather_power, axis=1).T new_weather_power.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c') plt.savefig(current_path + '/figs/测风法{}.png'.format(name)) new_weather_power = new_weather_power[new_weather_power['c'] == 'red'] number = len(new_weather_power) self.logger.info("未清洗限电前,总共有:{}条数据".format(len(self.weather_power))) self.logger.info("清除限电后保留的点有:" + str(number) + " 占比:" + str(round(number / len(self.weather_power), 2))) return new_weather_power.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']] def clean_limited_power_by_signal(self, name): weather_power1 = self.weather_power.copy() weather_power1["signal"] = weather_power1.apply( lambda x: self.signal_result(x["C_IS_RATIONING_BY_MANUAL_CONTROL"], x["C_IS_RATIONING_BY_AUTO_CONTROL"]), axis=1) weather_power1['c'] = weather_power1.apply(lambda x: 'cornflowerblue' if bool(x["signal"]) is True else 'pink', axis=1) weather_power1.plot.scatter(x=self.opt.usable_power["env"], y='C_REAL_VALUE', c='c') plt.savefig(current_path + '/figs/信号法{}.png'.format(name)) weather_power1 = weather_power1[weather_power1['signal'] == False] self.logger.info("信号法-未清洗限电前,总共有:{}条数据".format(len(self.weather_power))) self.logger.info("信号法-清除限电后保留的点有:" + str(len(weather_power1)) + " 占比:" + str( round(len(weather_power1) / len(self.weather_power), 2))) return weather_power1.loc[:, ['C_TIME', 'C_REAL_VALUE', 'C_ABLE_VALUE']] def signal_result(self, manual, auto): if int(manual) == 0: if int(auto) == 0: return False else: return True else: if int(auto) == 1: return True else: return False if __name__ == '__main__': power = pd.read_csv('2023-12-01至2023-12-23实际功率导出文件.csv', date_parser=['时间']) weather = pd.read_csv('2023-12-01至2023-12-23气象站数据导出文件.csv', date_parser=['时间']) weather_power = pd.merge(weather, power, on='时间') # 联立数据