|
@@ -0,0 +1,293 @@
|
|
|
+import pandas as pd
|
|
|
+import datetime, time
|
|
|
+import pytz
|
|
|
+from savedata import saveData, readData
|
|
|
+from Arg import Arg
|
|
|
+from sqlalchemy import create_engine
|
|
|
+import pytz
|
|
|
+from data_cleaning import cleaning, rm_duplicated
|
|
|
+
|
|
|
+# def readData(name):
|
|
|
+# """
|
|
|
+# 读取数据
|
|
|
+# :param name: 名字
|
|
|
+# :return:
|
|
|
+# """
|
|
|
+# path = dataloc + r"/" + name
|
|
|
+# return pd.read_csv(path)
|
|
|
+#
|
|
|
+#
|
|
|
+# def saveData(name, data):
|
|
|
+# """
|
|
|
+# 存放数据
|
|
|
+# :param name: 名字
|
|
|
+# :param data: 数据
|
|
|
+# :return:
|
|
|
+# """
|
|
|
+# path = dataloc + r"/" + name
|
|
|
+# os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
|
+# data.to_csv(path, index=False)
|
|
|
+
|
|
|
+
|
|
|
+def timestamp_to_datetime(ts):
|
|
|
+ local_timezone = pytz.timezone('Asia/Shanghai')
|
|
|
+ if type(ts) is not int:
|
|
|
+ raise ValueError("timestamp-时间格式必须是整型")
|
|
|
+ if len(str(ts)) == 13:
|
|
|
+ dt = datetime.datetime.fromtimestamp(ts/1000, tz=pytz.utc).astimezone(local_timezone)
|
|
|
+ return dt
|
|
|
+ elif len(str(ts)) == 10:
|
|
|
+ dt = datetime.datetime.fromtimestamp(ts, tz=pytz.utc).astimezone(local_timezone)
|
|
|
+ return dt
|
|
|
+ else:
|
|
|
+ raise ValueError("timestamp-时间格式错误")
|
|
|
+
|
|
|
+
|
|
|
+def timestr_to_timestamp(time_str):
|
|
|
+ """
|
|
|
+ 将时间戳或时间字符串转换为datetime.datetime类型
|
|
|
+ :param time_data: int or str
|
|
|
+ :return:datetime.datetime
|
|
|
+ """
|
|
|
+ if isinstance(time_str, str):
|
|
|
+ if len(time_str) == 10:
|
|
|
+ dt = datetime.datetime.strptime(time_str, '%Y-%m-%d')
|
|
|
+ return int(round(time.mktime(dt.timetuple())) * 1000)
|
|
|
+ elif len(time_str) in {17, 18, 19}:
|
|
|
+ dt = datetime.datetime.strptime(time_str, '%Y-%m-%d %H:%M:%S') # strptime字符串解析必须严格按照字符串中的格式
|
|
|
+ return int(round(time.mktime(dt.timetuple())) * 1000) # 转换成毫秒级的时间戳
|
|
|
+ else:
|
|
|
+ raise ValueError("时间字符串长度不满足要求!")
|
|
|
+ else:
|
|
|
+ return time_str
|
|
|
+
|
|
|
+
|
|
|
+class DataBase(object):
|
|
|
+ def __init__(self, arg):
|
|
|
+ self.begin = datetime.datetime.strptime(arg.begin, '%Y-%m-%d')
|
|
|
+ self.end = datetime.datetime.strptime(arg.end, '%Y-%m-%d') - pd.Timedelta(minutes=15)
|
|
|
+ self.begin_stamp = timestr_to_timestamp(str(arg.begin))
|
|
|
+ self.end_stamp = timestr_to_timestamp(str(self.end))
|
|
|
+ self.database = arg.database
|
|
|
+ self.towerloc = arg.towerloc
|
|
|
+ self.turbineloc = arg.turbineloc
|
|
|
+ self.dataloc = arg.dataloc
|
|
|
+
|
|
|
+ def clear_data(self):
|
|
|
+ """
|
|
|
+ 删除所有csv
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ # 设置文件夹路径
|
|
|
+ import glob
|
|
|
+ import os
|
|
|
+ folder_path = self.dataloc
|
|
|
+
|
|
|
+ # 使用 glob 获取所有的 .csv 文件路径
|
|
|
+ csv_files = glob.glob(os.path.join(folder_path, '**/*.csv'), recursive=True)
|
|
|
+
|
|
|
+ # 遍历所有 .csv 文件并删除
|
|
|
+ for file_path in csv_files:
|
|
|
+ os.remove(file_path)
|
|
|
+ print("清除所有csv文件")
|
|
|
+
|
|
|
+ def create_database(self):
|
|
|
+ """
|
|
|
+ 创建数据库连接
|
|
|
+ :param database: 数据库地址
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ engine = create_engine(self.database)
|
|
|
+ return engine
|
|
|
+
|
|
|
+ def exec_sql(self, sql, engine):
|
|
|
+ """
|
|
|
+ 从数据库获取数据
|
|
|
+ :param sql: sql语句
|
|
|
+ :param engine: 数据库对象
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ df = pd.read_sql_query(sql, engine)
|
|
|
+ return df
|
|
|
+
|
|
|
+ def split_time(self, data):
|
|
|
+ data.set_index('C_TIME', inplace=True)
|
|
|
+ data = data.sort_index().loc[self.begin: self.end]
|
|
|
+ data.reset_index(drop=False, inplace=True)
|
|
|
+ return data
|
|
|
+
|
|
|
+ def get_process_NWP(self):
|
|
|
+ """
|
|
|
+ 从数据库中获取NWP数据,并进行简单处理
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ # NPW数据
|
|
|
+ engine = self.create_database()
|
|
|
+ sql_NWP = "select C_PRE_TIME,C_T,C_RH,C_PRESSURE, C_SWR," \
|
|
|
+ "C_DIFFUSE_RADIATION, C_DIRECT_RADIATION, " \
|
|
|
+ "C_WD10,C_WD30,C_WD50,C_WD70,C_WD80,C_WD90,C_WD100,C_WD170," \
|
|
|
+ "C_WS10,C_WS30,C_WS50,C_WS70,C_WS80,C_WS90,C_WS100,C_WS170 from t_nwp" \
|
|
|
+ " where C_PRE_TIME between {} and {}".format(self.begin_stamp, self.end_stamp) # 风的NWP字段
|
|
|
+ NWP = self.exec_sql(sql_NWP, engine)
|
|
|
+
|
|
|
+ NWP['C_PRE_TIME'] = NWP['C_PRE_TIME'].apply(timestamp_to_datetime)
|
|
|
+
|
|
|
+ NWP = NWP.rename(columns={'C_PRE_TIME': 'C_TIME'})
|
|
|
+ NWP = cleaning(NWP, 'NWP')
|
|
|
+ # NWP = self.split_time(NWP)
|
|
|
+ NWP['C_TIME'] = NWP['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ saveData("NWP.csv", NWP)
|
|
|
+ return NWP
|
|
|
+
|
|
|
+ def get_process_tower(self):
|
|
|
+ """
|
|
|
+ 获取环境检测仪数据
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ engine = self.create_database()
|
|
|
+ print("提取测风塔:{}".format(self.towerloc))
|
|
|
+ for i in self.towerloc:
|
|
|
+ # 删除没用的列
|
|
|
+ drop_colmns = ["C_DATA1","C_DATA2","C_DATA3","C_DATA4","C_DATA5","C_DATA6","C_DATA7","C_DATA8","C_DATA9","C_DATA10","C_IS_GENERATED","C_ABNORMAL_CODE"]
|
|
|
+
|
|
|
+ get_colmns = []
|
|
|
+ # 查询表的所有列名
|
|
|
+ result_set = self.exec_sql("SHOW COLUMNS FROM t_wind_tower_status_data", engine)
|
|
|
+ for name in result_set.iloc[:, 0]:
|
|
|
+ if name not in drop_colmns:
|
|
|
+ get_colmns.append(name)
|
|
|
+
|
|
|
+ all_columns_str = ", ".join([f'{col}' for col in get_colmns])
|
|
|
+ tower_sql = "select " + all_columns_str + " from t_wind_tower_status_data where C_EQUIPMENT_NO="+str(i) + " and C_TIME between '{}' and '{}'".format(self.begin, self.end)
|
|
|
+ tower = self.exec_sql(tower_sql, engine)
|
|
|
+ tower['C_TIME'] = pd.to_datetime(tower['C_TIME'])
|
|
|
+ saveData("/tower-{}.csv".format(i), tower)
|
|
|
+ print("测风塔{}导出数据".format(i))
|
|
|
+
|
|
|
+
|
|
|
+ def get_process_power(self):
|
|
|
+ """
|
|
|
+ 获取整体功率数据
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ engine = self.create_database()
|
|
|
+ sql_cap = "select C_CAPACITY from t_electric_field"
|
|
|
+ cap = self.exec_sql(sql_cap, engine)['C_CAPACITY']
|
|
|
+ sql_power = "select C_TIME,C_REAL_VALUE, C_ABLE_VALUE, C_IS_RATIONING_BY_MANUAL_CONTROL, C_IS_RATIONING_BY_AUTO_CONTROL" \
|
|
|
+ " from t_power_station_status_data where C_TIME between '{}' and '{}'".format(self.begin, self.end)
|
|
|
+ # if self.opt.usable_power["clean_power_by_signal"]:
|
|
|
+ # sql_power += " and C_IS_RATIONING_BY_MANUAL_CONTROL=0 and C_IS_RATIONING_BY_AUTO_CONTROL=0"
|
|
|
+ powers = self.exec_sql(sql_power, engine)
|
|
|
+ powers['C_TIME'] = pd.to_datetime(powers['C_TIME'])
|
|
|
+ mask1 = powers['C_REAL_VALUE'].astype(float) > float(cap)
|
|
|
+ mask = powers['C_REAL_VALUE'] == -99
|
|
|
+
|
|
|
+ mask = mask | mask1
|
|
|
+ print("实际功率共{}条,要剔除功率有{}条".format(len(powers), mask.sum()))
|
|
|
+ powers = powers[~mask]
|
|
|
+ print("剔除完后还剩{}条".format(len(powers)))
|
|
|
+ binary_map = {b'\x00': 0, b'\x01': 1}
|
|
|
+ powers['C_IS_RATIONING_BY_AUTO_CONTROL'] = powers['C_IS_RATIONING_BY_AUTO_CONTROL'].map(binary_map)
|
|
|
+ powers = rm_duplicated(powers)
|
|
|
+ saveData("power.csv", powers)
|
|
|
+
|
|
|
+ def get_process_dq(self):
|
|
|
+ """
|
|
|
+ 获取短期预测结果
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ engine = self.create_database()
|
|
|
+ sql_dq = "select C_FORECAST_TIME AS C_TIME, C_FP_VALUE from t_forecast_power_short_term " \
|
|
|
+ "where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
|
|
|
+ dq = self.exec_sql(sql_dq, engine)
|
|
|
+ # dq['C_TIME'] = pd.to_datetime(dq['C_TIME'], unit='ms')
|
|
|
+ dq['C_TIME'] = dq['C_TIME'].apply(timestamp_to_datetime)
|
|
|
+ # dq = dq[dq['C_FORECAST_HOW_LONG_AGO'] == 1]
|
|
|
+ # dq.drop('C_FORECAST_HOW_LONG_AGO', axis=1, inplace=True)
|
|
|
+ dq = cleaning(dq, 'dq', cols=['C_FP_VALUE'])
|
|
|
+ dq['C_TIME'] = dq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ saveData("dq.csv", dq)
|
|
|
+
|
|
|
+ def indep_process(self):
|
|
|
+ """
|
|
|
+ 进一步数据处理:时间统一处理等
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ # 测风塔数据处理
|
|
|
+ for i in self.towerloc:
|
|
|
+ tower = readData("/tower-{}.csv".format(i))
|
|
|
+ tower['C_TIME'] = pd.to_datetime(tower['C_TIME'])
|
|
|
+ # 判断每一列是否全是 -99
|
|
|
+ all_minus_99 = (tower == -99).all()
|
|
|
+
|
|
|
+ # 获取全是 -99 的列的列名
|
|
|
+ cols_to_drop = all_minus_99[all_minus_99 == True].index.tolist()
|
|
|
+
|
|
|
+ # 使用 drop() 方法删除列
|
|
|
+ tower = tower.drop(cols_to_drop, axis=1)
|
|
|
+ tower = cleaning(tower, 'tower', ['C_WS_INST_HUB_HEIGHT'])
|
|
|
+ saveData("/tower-{}-process.csv".format(i), tower)
|
|
|
+
|
|
|
+ def get_process_cdq(self):
|
|
|
+ """
|
|
|
+ 获取超短期预测结果
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ engine = self.create_database()
|
|
|
+ sql_cdq = "select C_FORECAST_TIME AS C_TIME, C_ABLE_VALUE, C_FORECAST_HOW_LONG_AGO from t_forecast_power_ultra_short_term_his" \
|
|
|
+ " where C_FORECAST_TIME between {} and {}".format(self.begin_stamp, self.end_stamp)
|
|
|
+ cdq = self.exec_sql(sql_cdq, engine)
|
|
|
+ cdq['C_TIME'] = cdq['C_TIME'].apply(timestamp_to_datetime)
|
|
|
+ cdq = cleaning(cdq, 'cdq', cols=['C_ABLE_VALUE'], dup=False)
|
|
|
+ # cdq = cdq[cdq['C_FORECAST_HOW_LONG_AGO'] == int(str(self.opt.predict_point)[1:])]
|
|
|
+ cdq['C_TIME'] = cdq['C_TIME'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
|
|
+ saveData("cdq.csv", cdq)
|
|
|
+
|
|
|
+ def get_process_turbine(self):
|
|
|
+ """
|
|
|
+ 从数据库中获取风头数据,并进行简单处理
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ for number in self.turbineloc:
|
|
|
+ # number = self.opt.usable_power['turbine_id']
|
|
|
+ # 机头数据
|
|
|
+ engine = self.create_database()
|
|
|
+
|
|
|
+ print("导出风机{}的数据".format(number))
|
|
|
+ sql_turbine = "select C_TIME, C_WS, C_WD, C_ACTIVE_POWER from t_wind_turbine_status_data " \
|
|
|
+ "WHERE C_EQUIPMENT_NO=" + str(number) + " and C_TIME between '{}' and '{}'".format(self.begin, self.end) # + " and C_WS>0 and C_ACTIVE_POWER>0"
|
|
|
+ turbine = self.exec_sql(sql_turbine, engine)
|
|
|
+ turbine = cleaning(turbine, 'cdq', cols=['C_WS', 'C_ACTIVE_POWER'], dup=False)
|
|
|
+ turbine['C_TIME'] = pd.to_datetime(turbine['C_TIME'])
|
|
|
+ turbine = turbine[turbine['C_TIME'].dt.strftime('%M').isin(['00', '15', '30', '45'])]
|
|
|
+ # 直接导出所有数据
|
|
|
+ saveData("turbine-15/turbine-{}.csv".format(number), turbine)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ def data_process(self):
|
|
|
+ """
|
|
|
+ 数据导出+初步处理的总操控代码
|
|
|
+ :param database:
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ self.clear_data()
|
|
|
+ try:
|
|
|
+ # self.get_process_power()
|
|
|
+ # self.get_process_dq()
|
|
|
+ # self.get_process_cdq()
|
|
|
+ # self.get_process_NWP()
|
|
|
+ # self.get_process_tower()
|
|
|
+ self.get_process_turbine()
|
|
|
+ self.indep_process()
|
|
|
+ except Exception as e:
|
|
|
+ print("导出数据出错:{}".format(e.args))
|
|
|
+
|
|
|
+
|
|
|
+
|