123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :cdq_coe_gen.py
- # @Time :2025/3/28 16:20
- # @Author :David
- # @Company: shenyang JY
- import os, requests, json, time, traceback
- import pandas as pd
- import numpy as np
- from common.database_dml_koi import get_data_from_mongo
- from pymongo import MongoClient
- from flask import Flask,request,jsonify, g
- from datetime import datetime
- # from common.logs import Log
- # logger = Log('post-processing').logger
- from logging import getLogger
- logger = getLogger('xx')
- current_path = os.path.dirname(__file__)
- API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
- app = Flask('cdq_coe_gen——service')
- @app.before_request
- def update_config():
- # ------------ 整理参数,整合请求参数 ------------
- g.coe = {}
- def iterate_coe(pre_data, point, col_power, col_pre, coe):
- """
- 更新16个点系数
- """
- T = 'T' + str(point + 1)
- best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
- best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0
- req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
- req_dq = prepare_request_body(pre_data, col_power, col_pre)
- his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
- dq_acc, dq_score = calculate_acc(API_URL, req_dq)
- for i in range(5, 210):
- for j in range(5, 210):
- pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3)
- req_new = prepare_request_body(pre_data, col_power, 'new')
- acc, acc_score = calculate_acc(API_URL, req_new)
- if acc > best_acc:
- best_acc = acc
- best_score1 = acc_score
- best_coe_m = i / 170
- best_coe_n = j / 170
- if acc_score < best_score:
- best_score = acc_score
- best_acc1 = acc
- best_score_m = i / 170
- best_score_n = j / 170
- pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
- pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
- logger.info(
- "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
- logger.info(
- "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
- logger.info(
- "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
- logger.info(
- "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
- pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
- coe[T]['score_m'] = round(best_score_m, 3)
- coe[T]['score_n'] = round(best_score_n, 3)
- coe[T]['acc_m'] = round(best_coe_m, 3)
- coe[T]['acc_n'] = round(best_coe_n, 3)
- logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
- def prepare_request_body(df, col_power, col_pre):
- """
- 准备请求体,动态保留MongoDB中的所有字段
- """
- data = df.copy()
- # 转换时间格式为字符串
- if 'dateTime' in data.columns and isinstance(data['dateTime'].iloc[0], datetime):
- data['dateTime'] = data['dateTime'].dt.strftime('%Y-%m-%d %H:%M:%S')
- data['model'] = col_pre
- # 排除不需要的字段(如果有)
- exclude_fields = ['_id'] # 通常排除MongoDB的默认_id字段
- # 获取所有字段名(排除不需要的字段)
- available_fields = [col for col in data.columns if col not in exclude_fields]
- # 转换为记录列表(保留所有字段)
- data = data[available_fields].to_dict('records')
- # 构造请求体(固定部分+动态数据部分)
- request_body = {
- "stationCode": "J00600",
- "realPowerColumn": col_power,
- "ablePowerColumn": col_power,
- "predictPowerColumn": col_pre,
- "inStalledCapacityName": 153,
- "computTypeEnum": "E2",
- "computMeasEnum": "E2",
- "openCapacityName": 153,
- "onGridEnergy": 0,
- "price": 0,
- "fault": -99,
- "colTime": "dateTime", #时间列名(可选,要与上面'dateTime一致')
- # "computPowersEnum": "E4" # 计算功率类型(可选)
- "data": data # MongoDB数据
- }
- return request_body
- def calculate_acc(api_url, request_body):
- """
- 调用API接口
- """
- headers = {
- 'Content-Type': 'application/json',
- 'Accept': 'application/json'
- }
- try:
- response = requests.post(
- api_url,
- data=json.dumps(request_body, ensure_ascii=False),
- headers=headers
- )
- result = response.json()
- if response.status_code == 200:
- acc = np.average([res['accuracy'] for res in result])
- # ass = np.average([res['accuracyAssessment'] for res in result])
- print("111111111")
- return acc, 0
- else:
- logger.info(f"失败:{result['status']},{result['error']}")
- print(f"失败:{result['status']},{result['error']}")
- print("22222222")
- except requests.exceptions.RequestException as e:
- print(f"API调用失败: {e}")
- print("333333333")
- return None
- def history_error(data, col_power, col_pre):
- data['error'] = data[col_power] - data[col_pre]
- data['error'] = data['error'].round(2)
- data.reset_index(drop=True, inplace=True)
- # 用前面5个点的平均error,和象心力相加
- numbers = len(data) - 5
- datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)]
- data_error = [np.mean(d.iloc[0:5, -1]) for d in datas]
- pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0)
- data['his_fix'] = data[col_pre] + pad_data_error
- data = data.iloc[5:, :].reset_index(drop=True)
- data.loc[data[col_pre] <= 0, ['his_fix']] = 0
- data['dateTime'] = pd.to_datetime(data['dateTime'])
- data = data.loc[:, ['dateTime', col_power, col_pre, 'his_fix']]
- # data.to_csv('J01080原始数据.csv', index=False)
- return data
- @app.route('/cdq_coe_gen', methods=['POST'])
- def get_station_cdq_coe():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- args = {}
- coe = g.coe
- try:
- args = request.values.to_dict()
- logger.info(args)
- data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
- pre_data = history_error(data, col_power='realPower', col_pre='dq')
- for point in range(0, 16, 1):
- iterate_coe(pre_data, point, 'realPower', 'dq', coe)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- logger.info("调系数出错:{}".format(my_exception))
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['coe'] = coe
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- return result
- if __name__ == "__main__":
- # args = {
- # 'mongodb_database': 'ldw_ftp',
- # 'mongodb_read_table': 'j00600',
- # # 'timeBegin': '2025-01-01 00:00:00',
- # # 'timeEnd': '2025-01-03 23:45:00'
- # }
- # data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
- # pre_data = history_error(data, col_power='realPower', col_pre='dq')
- # for point in range(0, 16, 1):
- # iterate_coe(pre_data, point, 'realPower', 'dq')
- # run_code = 0
- print("Program starts execution!")
- from waitress import serve
- serve(
- app,
- host="0.0.0.0",
- port=10123,
- threads=8, # 指定线程数(默认4,根据硬件调整)
- channel_timeout=600 # 连接超时时间(秒)
- )
|