tf_bilstm.py 4.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bilstm.py.py
  4. # @Time :2025/4/14 15:43
  5. # @Author :David
  6. # @Company: shenyang JY
  7. from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten, Bidirectional
  8. from tensorflow.keras.models import Model, load_model
  9. from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
  10. from tensorflow.keras import optimizers, regularizers
  11. from models_processing.model_tf.losses import region_loss
  12. import numpy as np
  13. from common.database_dml_koi import *
  14. from models_processing.model_tf.settings import set_deterministic
  15. from threading import Lock
  16. import argparse
  17. model_lock = Lock()
  18. set_deterministic(42)
  19. class TSHandler(object):
  20. def __init__(self, logger, args):
  21. self.logger = logger
  22. self.opt = argparse.Namespace(**args)
  23. self.model = None
  24. self.model_params = None
  25. def get_model(self, args):
  26. """
  27. 单例模式+线程锁,防止在异步加载时引发线程安全
  28. """
  29. try:
  30. with model_lock:
  31. loss = region_loss(self.opt)
  32. self.model, self.model_params = get_keras_model_from_mongo(args, {type(loss).__name__: loss})
  33. except Exception as e:
  34. self.logger.info("加载模型权重失败:{}".format(e.args))
  35. @staticmethod
  36. def get_keras_model(opt, time_series=3):
  37. loss = region_loss(opt)
  38. l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
  39. nwp_input = Input(shape=(opt.Model['time_step']*time_series, opt.Model['input_size']), name='nwp')
  40. con1 = Conv1D(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', kernel_regularizer=l2_reg)(nwp_input)
  41. con1_p = MaxPooling1D(pool_size=5, strides=1, padding='valid', data_format='channels_last')(con1)
  42. nwp_bi_lstm = Bidirectional(LSTM(units=opt.Model['hidden_size'], return_sequences=False, kernel_regularizer=l2_reg), merge_mode='concat')(con1_p) # 默认拼接双向输出(最终维度=2*hidden_size)
  43. output = Dense(opt.Model['time_step']*time_series, name='cdq_output')(nwp_bi_lstm)
  44. model = Model(nwp_input, output)
  45. adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  46. model.compile(loss=loss, optimizer=adam)
  47. return model
  48. def train_init(self):
  49. try:
  50. # 进行加强训练,支持修模
  51. loss = region_loss(self.opt)
  52. base_train_model, self.model_params = get_keras_model_from_mongo(vars(self.opt), {type(loss).__name__: loss})
  53. base_train_model.summary()
  54. self.logger.info("已加载加强训练基础模型")
  55. return base_train_model
  56. except Exception as e:
  57. self.logger.info("加载加强训练模型权重失败:{}".format(e.args))
  58. return False
  59. def training(self, model, train_and_valid_data):
  60. model.summary()
  61. train_x, train_y, valid_x, valid_y = train_and_valid_data
  62. early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
  63. history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'],
  64. verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
  65. loss = np.round(history.history['loss'], decimals=5)
  66. val_loss = np.round(history.history['val_loss'], decimals=5)
  67. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  68. self.logger.info("训练集损失函数为:{}".format(loss))
  69. self.logger.info("验证集损失函数为:{}".format(val_loss))
  70. return model
  71. def predict(self, test_x, batch_size=1):
  72. result = self.model.predict(test_x, batch_size=batch_size)
  73. self.logger.info("执行预测方法")
  74. return result
  75. if __name__ == "__main__":
  76. run_code = 0