tf_lstm_train.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_koi.tf_lstm import TSHandler
  15. from models_processing.model_koi.tf_cnn import CNNHandler
  16. from common.database_dml import *
  17. import matplotlib.pyplot as plt
  18. from common.logs import Log
  19. logger = logging.getLogger()
  20. # logger = Log('models-processing').logger
  21. np.random.seed(42) # NumPy随机种子
  22. # tf.set_random_seed(42) # TensorFlow随机种子
  23. app = Flask('tf_lstm_train——service')
  24. with app.app_context():
  25. with open('../model_koi/lstm.yaml', 'r', encoding='utf-8') as f:
  26. args = yaml.safe_load(f)
  27. dh = DataHandler(logger, args)
  28. ts = TSHandler(logger, args)
  29. # ts = CNNHandler(logger, args)
  30. global opt
  31. @app.before_request
  32. def update_config():
  33. # ------------ 整理参数,整合请求参数 ------------
  34. args_dict = request.values.to_dict()
  35. args_dict['features'] = args_dict['features'].split(',')
  36. args.update(args_dict)
  37. opt = argparse.Namespace(**args)
  38. dh.opt = opt
  39. ts.opt = opt
  40. logger.info(args)
  41. @app.route('/nn_lstm_training', methods=['POST'])
  42. def model_training_bp():
  43. # 获取程序开始时间
  44. start_time = time.time()
  45. result = {}
  46. success = 0
  47. print("Program starts execution!")
  48. try:
  49. # ------------ 获取数据,预处理训练数据 ------------
  50. train_data = get_data_from_mongo(args)
  51. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  52. # ------------ 训练模型,保存模型 ------------
  53. ts.opt.Model['input_size'] = train_x.shape[2]
  54. ts_model = ts.training([train_x, valid_x, train_y, valid_y])
  55. args['params'] = json.dumps(args)
  56. args['descr'] = '测试'
  57. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  58. insert_trained_model_into_mongo(ts_model, args)
  59. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  60. success = 1
  61. except Exception as e:
  62. my_exception = traceback.format_exc()
  63. my_exception.replace("\n", "\t")
  64. result['msg'] = my_exception
  65. end_time = time.time()
  66. result['success'] = success
  67. result['args'] = args
  68. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  69. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  70. print("Program execution ends!")
  71. return result
  72. if __name__ == "__main__":
  73. print("Program starts execution!")
  74. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  75. logger = logging.getLogger("model_training_bp log")
  76. from waitress import serve
  77. serve(app, host="0.0.0.0", port=10103, threads=4)
  78. print("server start!")
  79. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  80. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  81. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  82. # args_dict['features'] = args_dict['features'].split(',')
  83. # args.update(args_dict)
  84. # dh = DataHandler(logger, args)
  85. # ts = TSHandler(logger, args)
  86. # opt = argparse.Namespace(**args)
  87. # opt.Model['input_size'] = len(opt.features)
  88. # train_data = get_data_from_mongo(args_dict)
  89. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  90. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  91. #
  92. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  93. # args_dict['params'] = args
  94. # args_dict['descr'] = '测试'
  95. # insert_trained_model_into_mongo(ts_model, args_dict)
  96. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)