tf_bp.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp.py
  4. # @Time :2025/2/13 13:34
  5. # @Author :David
  6. # @Company: shenyang JY
  7. from tensorflow.keras.models import Sequential
  8. from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten
  9. from tensorflow.keras.models import Model, load_model
  10. from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
  11. from tensorflow.keras import optimizers, regularizers
  12. from models_processing.losses.loss_cdq import rmse
  13. import numpy as np
  14. from common.database_dml import *
  15. from threading import Lock
  16. import argparse
  17. model_lock = Lock()
  18. class BPHandler(object):
  19. def __init__(self, logger, args):
  20. self.logger = logger
  21. self.opt = argparse.Namespace(**args)
  22. self.model = None
  23. def get_model(self, args):
  24. """
  25. 单例模式+线程锁,防止在异步加载时引发线程安全
  26. """
  27. try:
  28. with model_lock:
  29. # NPHandler.model = NPHandler.get_keras_model(opt)
  30. self.model = get_h5_model_from_mongo(args, {'rmse': rmse})
  31. except Exception as e:
  32. self.logger.info("加载模型权重失败:{}".format(e.args))
  33. @staticmethod
  34. def get_keras_model(opt):
  35. model = Sequential([
  36. Dense(64, input_dim=opt.Model['input_size'], activation='relu'), # 输入层和隐藏层,10个神经元
  37. Dense(32, activation='relu'), # 隐藏层,8个神经元
  38. Dense(1, activation='linear') # 输出层,1个神经元(用于回归任务)
  39. ])
  40. adam = optimizers.Adam(learning_rate=opt.Model['learning_rate'], beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  41. model.compile(loss=rmse, optimizer=adam)
  42. return model
  43. def train_init(self):
  44. try:
  45. if self.opt.Model['add_train']:
  46. # 进行加强训练,支持修模
  47. base_train_model = get_h5_model_from_mongo(vars(self.opt), {'rmse': rmse})
  48. base_train_model.summary()
  49. self.logger.info("已加载加强训练基础模型")
  50. else:
  51. base_train_model = self.get_keras_model(self.opt)
  52. return base_train_model
  53. except Exception as e:
  54. self.logger.info("加强训练加载模型权重失败:{}".format(e.args))
  55. def training(self, train_and_valid_data):
  56. model = self.train_init()
  57. # tf.reset_default_graph() # 清除默认图
  58. train_x, train_y, valid_x, valid_y = train_and_valid_data
  59. print("----------", np.array(train_x[0]).shape)
  60. print("++++++++++", np.array(train_x[1]).shape)
  61. model.summary()
  62. early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
  63. history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'], verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
  64. loss = np.round(history.history['loss'], decimals=5)
  65. val_loss = np.round(history.history['val_loss'], decimals=5)
  66. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  67. self.logger.info("训练集损失函数为:{}".format(loss))
  68. self.logger.info("验证集损失函数为:{}".format(val_loss))
  69. return model
  70. def predict(self, test_x, batch_size=1):
  71. result = self.model.predict(test_x, batch_size=batch_size)
  72. self.logger.info("执行预测方法")
  73. return result
  74. if __name__ == "__main__":
  75. run_code = 0