tf_lstm_train.py 3.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, jsonify
  10. import traceback, uuid
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml, threading
  14. from models_processing.model_koi.tf_lstm import TSHandler
  15. from common.database_dml_koi import *
  16. from common.logs import Log
  17. logger = Log('tf_ts').logger
  18. np.random.seed(42) # NumPy随机种子
  19. app = Flask('tf_lstm_train——service')
  20. with app.app_context():
  21. with open('./models_processing/model_koi/lstm.yaml', 'r', encoding='utf-8') as f:
  22. args = yaml.safe_load(f)
  23. dh = DataHandler(logger, args)
  24. ts = TSHandler(logger, args)
  25. @app.before_request
  26. def update_config():
  27. # ------------ 整理参数,整合请求参数 ------------
  28. args_dict = request.values.to_dict()
  29. args_dict['features'] = args_dict['features'].split(',')
  30. args.update(args_dict)
  31. opt = argparse.Namespace(**args)
  32. dh.opt = opt
  33. ts.opt = opt
  34. logger.info(args)
  35. @app.route('/nn_lstm_training', methods=['POST'])
  36. def model_training_bp():
  37. # 获取程序开始时间
  38. start_time = time.time()
  39. result = {}
  40. print("Program starts execution!")
  41. try:
  42. # ------------ 获取数据,预处理训练数据 ------------
  43. train_data = get_data_from_mongo(args)
  44. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  45. # ------------ 训练模型,保存模型 ------------
  46. ts.opt.Model['input_size'] = train_x.shape[2]
  47. ts.opt.cap = round(scaled_cap, 2)
  48. ts_model = ts.training([train_x, valid_x, train_y, valid_y])
  49. args['params'] = json.dumps(args)
  50. args['descr'] = '测试'
  51. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  52. insert_trained_model_into_mongo(ts_model, args)
  53. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  54. success = 1
  55. except Exception as e:
  56. my_exception = traceback.format_exc()
  57. my_exception.replace("\n", "\t")
  58. result['msg'] = my_exception
  59. end_time = time.time()
  60. result['success'] = success
  61. result['args'] = args
  62. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  63. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  64. print("Program execution ends!")
  65. return result
  66. if __name__ == "__main__":
  67. print("Program starts execution!")
  68. from waitress import serve
  69. serve(app, host="0.0.0.0", port=10115)
  70. print("server start!")
  71. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  72. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  73. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  74. # args_dict['features'] = args_dict['features'].split(',')
  75. # args.update(args_dict)
  76. # dh = DataHandler(logger, args)
  77. # ts = TSHandler(logger, args)
  78. # opt = argparse.Namespace(**args)
  79. # opt.Model['input_size'] = len(opt.features)
  80. # train_data = get_data_from_mongo(args_dict)
  81. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  82. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  83. #
  84. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  85. # args_dict['params'] = args
  86. # args_dict['descr'] = '测试'
  87. # insert_trained_model_into_mongo(ts_model, args_dict)
  88. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)