tf_bp.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp.py
  4. # @Time :2025/2/13 13:34
  5. # @Author :David
  6. # @Company: shenyang JY
  7. from tensorflow.keras.models import Sequential
  8. from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten
  9. from tensorflow.keras.models import Model, load_model
  10. from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
  11. from tensorflow.keras import optimizers, regularizers
  12. from models_processing.losses.loss_cdq import rmse
  13. from models_processing.model_koi.settings import set_deterministic
  14. import numpy as np
  15. from common.database_dml_koi import *
  16. from threading import Lock
  17. import argparse
  18. model_lock = Lock()
  19. set_deterministic(42)
  20. class BPHandler(object):
  21. def __init__(self, logger, args):
  22. self.logger = logger
  23. self.opt = argparse.Namespace(**args)
  24. self.model = None
  25. def get_model(self, args):
  26. """
  27. 单例模式+线程锁,防止在异步加载时引发线程安全
  28. """
  29. try:
  30. with model_lock:
  31. # NPHandler.model = NPHandler.get_keras_model(opt)
  32. self.model = get_h5_model_from_mongo(args, {'rmse': rmse})
  33. except Exception as e:
  34. self.logger.info("加载模型权重失败:{}".format(e.args))
  35. @staticmethod
  36. def get_keras_model(opt):
  37. model = Sequential([
  38. Dense(64, input_dim=opt.Model['input_size'], activation='relu'), # 输入层和隐藏层,10个神经元
  39. Dense(32, activation='relu'), # 隐藏层,8个神经元
  40. Dense(16, activation='relu'), # 隐藏层,8个神经元
  41. Dense(1, activation='linear') # 输出层,1个神经元(用于回归任务)
  42. ])
  43. adam = optimizers.Adam(learning_rate=opt.Model['learning_rate'], beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  44. model.compile(loss=rmse, optimizer=adam)
  45. return model
  46. def train_init(self):
  47. try:
  48. if self.opt.Model['add_train']:
  49. # 进行加强训练,支持修模
  50. base_train_model = get_h5_model_from_mongo(vars(self.opt), {'rmse': rmse})
  51. base_train_model.summary()
  52. self.logger.info("已加载加强训练基础模型")
  53. else:
  54. base_train_model = self.get_keras_model(self.opt)
  55. return base_train_model
  56. except Exception as e:
  57. self.logger.info("加强训练加载模型权重失败:{}".format(e.args))
  58. def training(self, train_and_valid_data):
  59. model = self.train_init()
  60. # tf.reset_default_graph() # 清除默认图
  61. train_x, train_y, valid_x, valid_y = train_and_valid_data
  62. print("----------", np.array(train_x[0]).shape)
  63. print("++++++++++", np.array(train_x[1]).shape)
  64. model.summary()
  65. early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
  66. history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'], verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
  67. loss = np.round(history.history['loss'], decimals=5)
  68. val_loss = np.round(history.history['val_loss'], decimals=5)
  69. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  70. self.logger.info("训练集损失函数为:{}".format(loss))
  71. self.logger.info("验证集损失函数为:{}".format(val_loss))
  72. return model
  73. def predict(self, test_x, batch_size=1):
  74. result = self.model.predict(test_x, batch_size=batch_size)
  75. self.logger.info("执行预测方法")
  76. return result
  77. if __name__ == "__main__":
  78. run_code = 0