123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm_train.py
- # @Time :2025/2/13 10:52
- # @Author :David
- # @Company: shenyang JY
- import json, copy
- import numpy as np
- from flask import Flask, request, jsonify
- import traceback, uuid
- import logging, argparse
- from data_processing.data_operation.data_handler import DataHandler
- import time, yaml, threading
- from models_processing.model_tf.tf_test import TSHandler
- from common.database_dml_koi import *
- from common.logs import Log
- logger = Log('tf_test').logger
- np.random.seed(42) # NumPy随机种子
- app = Flask('tf_test_train——service')
- with app.app_context():
- current_dir = os.path.dirname(os.path.abspath(__file__))
- with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
- args = yaml.safe_load(f)
- dh = DataHandler(logger, args)
- ts = TSHandler(logger, args)
- @app.before_request
- def update_config():
- # ------------ 整理参数,整合请求参数 ------------
- args_dict = request.values.to_dict()
- args_dict['features'] = args_dict['features'].split(',')
- args.update(args_dict)
- opt = argparse.Namespace(**args)
- dh.opt = opt
- ts.opt = opt
- logger.info(args)
- @app.route('/nn_test_training', methods=['POST'])
- def model_training_test():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- # ------------ 获取数据,预处理训练数据 ------------
- train_data = get_data_from_mongo(args)
- train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
- # ------------ 训练模型,保存模型 ------------
- ts.opt.Model['input_size'] = train_x.shape[2]
- ts.opt.cap = round(scaled_cap, 2)
- ts_model = ts.training([train_x, train_y, valid_x, valid_y])
- args['params'] = json.dumps(args)
- args['descr'] = '测试'
- args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
- insert_trained_model_into_mongo(ts_model, args)
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__ == "__main__":
- print("Program starts execution!")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10117,
- threads=8, # 指定线程数(默认4,根据硬件调整)
- channel_timeout=600 # 连接超时时间(秒)
- )
- print("server start!")
- # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
- # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
- # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- # args_dict['features'] = args_dict['features'].split(',')
- # args.update(args_dict)
- # dh = DataHandler(logger, args)
- # ts = TSHandler(logger, args)
- # opt = argparse.Namespace(**args)
- # opt.Model['input_size'] = len(opt.features)
- # train_data = get_data_from_mongo(args_dict)
- # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
- # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
- #
- # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
- # args_dict['params'] = args
- # args_dict['descr'] = '测试'
- # insert_trained_model_into_mongo(ts_model, args_dict)
- # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|