123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- from flask import Flask,request
- import time
- import logging
- import traceback
- import numpy as np
- from itertools import chain
- from common.database_dml import get_data_from_mongo,insert_data_into_mongo,get_h5_model_from_mongo,get_scaler_model_from_mongo
- app = Flask('model_prediction_lstm——service')
- # 创建时间序列数据
- def create_sequences(data_features,data_target,time_steps):
- X, y = [], []
- if len(data_features)<time_steps:
- print("数据长度不能比时间步长小!")
- return np.array(X), np.array(y)
- else:
- for i in range(len(data_features) - time_steps+1):
- X.append(data_features[i:(i + time_steps)])
- if len(data_target)>0:
- y.append(data_target[i + time_steps -1])
- return np.array(X), np.array(y)
- def model_prediction(df,args):
- features, time_steps, col_time = str_to_list(args['features']), int(args['time_steps']),args['col_time']
- feature_scaler,target_scaler = get_scaler_model_from_mongo(args)
- df = df.fillna(method='ffill').fillna(method='bfill').sort_values(by=col_time)
- scaled_features = feature_scaler.transform(df[features])
- X_predict, _ = create_sequences(scaled_features, [], time_steps)
- # 加载模型时传入自定义损失函数
- # model = load_model(f'{farmId}_model.h5', custom_objects={'rmse': rmse})
- model = get_h5_model_from_mongo(args)
- y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(X_predict).flatten()])))
- result = df[-len(y_predict):]
- result['predict'] = y_predict
- return result
- def str_to_list(arg):
- if arg == '':
- return []
- else:
- return arg.split(',')
- @app.route('/model_prediction_lstm', methods=['POST'])
- def model_prediction_lstm():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args',args)
- logger.info(args)
- power_df = get_data_from_mongo(args)
- model = model_prediction(power_df,args)
- insert_data_into_mongo(model,args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n","\t")
- result['msg'] = my_exception
- end_time = time.time()
-
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__=="__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_prediction_lstm log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10097)
- print("server start!")
-
|