cdq_coe_gen.py 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :cdq_coe_gen.py
  4. # @Time :2025/3/28 16:20
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import os, requests, json, time, traceback
  8. import pandas as pd
  9. import numpy as np
  10. from common.database_dml_koi import get_data_from_mongo
  11. from pymongo import MongoClient
  12. from flask import Flask,request,jsonify, g
  13. from datetime import datetime
  14. # from common.logs import Log
  15. # logger = Log('post-processing').logger
  16. from logging import getLogger
  17. logger = getLogger('xx')
  18. current_path = os.path.dirname(__file__)
  19. API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
  20. app = Flask('cdq_coe_gen——service')
  21. @app.before_request
  22. def update_config():
  23. # ------------ 整理参数,整合请求参数 ------------
  24. g.coe = {}
  25. def iterate_coe(pre_data, point, col_power, col_pre, coe):
  26. """
  27. 更新16个点系数
  28. """
  29. T = 'T' + str(point + 1)
  30. best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
  31. best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0
  32. req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
  33. req_dq = prepare_request_body(pre_data, col_power, col_pre)
  34. his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
  35. dq_acc, dq_score = calculate_acc(API_URL, req_dq)
  36. for i in range(5, 210):
  37. for j in range(5, 210):
  38. pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3)
  39. req_new = prepare_request_body(pre_data, col_power, 'new')
  40. acc, acc_score = calculate_acc(API_URL, req_new)
  41. if acc > best_acc:
  42. best_acc = acc
  43. best_score1 = acc_score
  44. best_coe_m = i / 170
  45. best_coe_n = j / 170
  46. if acc_score < best_score:
  47. best_score = acc_score
  48. best_acc1 = acc
  49. best_score_m = i / 170
  50. best_score_n = j / 170
  51. pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
  52. pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
  53. logger.info(
  54. "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
  55. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
  56. logger.info(
  57. "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
  58. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
  59. logger.info(
  60. "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
  61. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
  62. logger.info(
  63. "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
  64. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
  65. coe[T]['score_m'] = round(best_score_m, 3)
  66. coe[T]['score_n'] = round(best_score_n, 3)
  67. coe[T]['acc_m'] = round(best_coe_m, 3)
  68. coe[T]['acc_n'] = round(best_coe_n, 3)
  69. logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
  70. def prepare_request_body(df, col_power, col_pre):
  71. """
  72. 准备请求体,动态保留MongoDB中的所有字段
  73. """
  74. data = df.copy()
  75. # 转换时间格式为字符串
  76. if 'dateTime' in data.columns and isinstance(data['dateTime'].iloc[0], datetime):
  77. data['dateTime'] = data['dateTime'].dt.strftime('%Y-%m-%d %H:%M:%S')
  78. data['model'] = col_pre
  79. # 排除不需要的字段(如果有)
  80. exclude_fields = ['_id'] # 通常排除MongoDB的默认_id字段
  81. # 获取所有字段名(排除不需要的字段)
  82. available_fields = [col for col in data.columns if col not in exclude_fields]
  83. # 转换为记录列表(保留所有字段)
  84. data = data[available_fields].to_dict('records')
  85. # 构造请求体(固定部分+动态数据部分)
  86. request_body = {
  87. "stationCode": "J00600",
  88. "realPowerColumn": col_power,
  89. "ablePowerColumn": col_power,
  90. "predictPowerColumn": col_pre,
  91. "inStalledCapacityName": 153,
  92. "computTypeEnum": "E2",
  93. "computMeasEnum": "E2",
  94. "openCapacityName": 153,
  95. "onGridEnergy": 0,
  96. "price": 0,
  97. "fault": -99,
  98. "colTime": "dateTime", #时间列名(可选,要与上面'dateTime一致')
  99. # "computPowersEnum": "E4" # 计算功率类型(可选)
  100. "data": data # MongoDB数据
  101. }
  102. return request_body
  103. def calculate_acc(api_url, request_body):
  104. """
  105. 调用API接口
  106. """
  107. headers = {
  108. 'Content-Type': 'application/json',
  109. 'Accept': 'application/json'
  110. }
  111. try:
  112. response = requests.post(
  113. api_url,
  114. data=json.dumps(request_body, ensure_ascii=False),
  115. headers=headers
  116. )
  117. result = response.json()
  118. if response.status_code == 200:
  119. acc = np.average([res['accuracy'] for res in result])
  120. # ass = np.average([res['accuracyAssessment'] for res in result])
  121. print("111111111")
  122. return acc, 0
  123. else:
  124. logger.info(f"失败:{result['status']},{result['error']}")
  125. print(f"失败:{result['status']},{result['error']}")
  126. print("22222222")
  127. except requests.exceptions.RequestException as e:
  128. print(f"API调用失败: {e}")
  129. print("333333333")
  130. return None
  131. def history_error(data, col_power, col_pre):
  132. data['error'] = data[col_power] - data[col_pre]
  133. data['error'] = data['error'].round(2)
  134. data.reset_index(drop=True, inplace=True)
  135. # 用前面5个点的平均error,和象心力相加
  136. numbers = len(data) - 5
  137. datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)]
  138. data_error = [np.mean(d.iloc[0:5, -1]) for d in datas]
  139. pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0)
  140. data['his_fix'] = data[col_pre] + pad_data_error
  141. data = data.iloc[5:, :].reset_index(drop=True)
  142. data.loc[data[col_pre] <= 0, ['his_fix']] = 0
  143. data['dateTime'] = pd.to_datetime(data['dateTime'])
  144. data = data.loc[:, ['dateTime', col_power, col_pre, 'his_fix']]
  145. # data.to_csv('J01080原始数据.csv', index=False)
  146. return data
  147. @app.route('/cdq_coe_gen', methods=['POST'])
  148. def get_station_cdq_coe():
  149. # 获取程序开始时间
  150. start_time = time.time()
  151. result = {}
  152. success = 0
  153. args = {}
  154. coe = g.coe
  155. try:
  156. args = request.values.to_dict()
  157. logger.info(args)
  158. data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
  159. pre_data = history_error(data, col_power='realPower', col_pre='dq')
  160. for point in range(0, 16, 1):
  161. iterate_coe(pre_data, point, 'realPower', 'dq', coe)
  162. success = 1
  163. except Exception as e:
  164. my_exception = traceback.format_exc()
  165. my_exception.replace("\n", "\t")
  166. result['msg'] = my_exception
  167. logger.info("调系数出错:{}".format(my_exception))
  168. end_time = time.time()
  169. result['success'] = success
  170. result['args'] = args
  171. result['coe'] = coe
  172. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  173. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  174. return result
  175. if __name__ == "__main__":
  176. # args = {
  177. # 'mongodb_database': 'ldw_ftp',
  178. # 'mongodb_read_table': 'j00600',
  179. # # 'timeBegin': '2025-01-01 00:00:00',
  180. # # 'timeEnd': '2025-01-03 23:45:00'
  181. # }
  182. # data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
  183. # pre_data = history_error(data, col_power='realPower', col_pre='dq')
  184. # for point in range(0, 16, 1):
  185. # iterate_coe(pre_data, point, 'realPower', 'dq')
  186. # run_code = 0
  187. print("Program starts execution!")
  188. from waitress import serve
  189. serve(
  190. app,
  191. host="0.0.0.0",
  192. port=10123,
  193. threads=8, # 指定线程数(默认4,根据硬件调整)
  194. channel_timeout=600 # 连接超时时间(秒)
  195. )