123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- import lightgbm as lgb
- import argparse
- import pandas as pd
- import numpy as np
- from pymongo import MongoClient
- import pickle
- from flask import Flask,request,jsonify
- from waitress import serve
- import time
- import logging
- import traceback
- app = Flask('model_prediction_lightgbm——service')
- def get_data_from_mongo(args):
- mongodb_connection,mongodb_database,mongodb_read_table,timeBegin,timeEnd = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_read_table'],args['timeBegin'],args['timeEnd']
- client = MongoClient(mongodb_connection)
- # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
- db = client[mongodb_database]
- collection = db[mongodb_read_table] # 集合名称
- query = {"dateTime": {"$gte": timeBegin, "$lte": timeEnd}}
- cursor = collection.find(query)
- data = list(cursor)
- df = pd.DataFrame(data)
- # 4. 删除 _id 字段(可选)
- if '_id' in df.columns:
- df = df.drop(columns=['_id'])
- client.close()
- return df
-
- def insert_data_into_mongo(res_df,args):
- mongodb_connection,mongodb_database,mongodb_write_table = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_write_table']
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- if mongodb_write_table in db.list_collection_names():
- db[mongodb_write_table].drop()
- print(f"Collection '{mongodb_write_table} already exist, deleted successfully!")
- collection = db[mongodb_write_table] # 集合名称
- # 将 DataFrame 转为字典格式
- data_dict = res_df.to_dict("records") # 每一行作为一个字典
- # 插入到 MongoDB
- collection.insert_many(data_dict)
- print("data inserted successfully!")
-
- def model_prediction(df,args):
- mongodb_connection,mongodb_database,mongodb_model_table,model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_model_table'],args['model_name']
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- collection = db[mongodb_model_table]
- model_data = collection.find_one({"model_name": model_name})
- if model_data is not None:
- model_binary = model_data['model'] # 确保这个字段是存储模型的二进制数据
- # 反序列化模型
- model = pickle.loads(model_binary)
- df['predict'] = model.predict(df[model.feature_name()])
- print("model predict result successfully!")
- return df
- @app.route('/model_prediction_lightgbm', methods=['POST'])
- def model_prediction_lightgbm():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args',args)
- logger.info(args)
- power_df = get_data_from_mongo(args)
- model = model_prediction(power_df,args)
- insert_data_into_mongo(model,args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n","\t")
- result['msg'] = my_exception
- end_time = time.time()
-
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__=="__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_prediction_lightgbm log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10090)
- print("server start!")
-
|