cdq_coe_gen.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :cdq_coe_gen.py
  4. # @Time :2025/3/28 16:20
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import os, requests, json
  8. import pandas as pd
  9. import numpy as np
  10. from common.database_dml_koi import get_data_from_mongo
  11. from pymongo import MongoClient
  12. from flask import Flask,request,jsonify
  13. from datetime import datetime
  14. # from common.logs import Log
  15. # logger = Log('post-processing').logger
  16. from logging import getLogger
  17. logger = getLogger('xx')
  18. current_path = os.path.dirname(__file__)
  19. API_URL = "http://ds2:18080/accuracyAndBiasByJSON"
  20. def iterate_coe(pre_data, point, col_power, col_pre):
  21. """
  22. 更新16个点系数
  23. """
  24. coe = {}
  25. T = 'T' + str(point + 1)
  26. best_acc, best_score1, best_coe_m, best_coe_n = 0, 0, 0, 0
  27. best_score, best_acc1, best_score_m, best_score_n = 999, 0, 0, 0
  28. req_his_fix = prepare_request_body(pre_data, col_power, 'his_fix')
  29. req_dq = prepare_request_body(pre_data, col_power, col_pre)
  30. his_fix_acc, his_fix_score = calculate_acc(API_URL, req_his_fix)
  31. dq_acc, dq_score = calculate_acc(API_URL, req_dq)
  32. for i in range(5, 210):
  33. for j in range(5, 210):
  34. pre_data["new"] = round(i / 170 * pre_data[col_pre] + j / 170 * pre_data['his_fix'], 3)
  35. req_new = prepare_request_body(pre_data, col_power, 'new')
  36. acc, acc_score = calculate_acc(API_URL, req_new)
  37. if acc > best_acc:
  38. best_acc = acc
  39. best_score1 = acc_score
  40. best_coe_m = i / 170
  41. best_coe_n = j / 170
  42. if acc_score < best_score:
  43. best_score = acc_score
  44. best_acc1 = acc
  45. best_score_m = i / 170
  46. best_score_n = j / 170
  47. pre_data["coe-acc"] = round(best_coe_m * pre_data[col_pre] + best_coe_n * pre_data['his_fix'], 3)
  48. pre_data["coe-ass"] = round(best_score_m * pre_data[col_pre] + best_score_n * pre_data['his_fix'], 3)
  49. logger.info(
  50. "1.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
  51. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc, his_fix_acc))
  52. logger.info(
  53. "2.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
  54. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score1, his_fix_score))
  55. logger.info(
  56. "3.过去{} - {}的短期的准确率:{:.4f},自动确认系数后,{} 超短期的准确率:{:.4f},历史功率:{:.4f}".format(
  57. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_acc, T, best_acc1, his_fix_acc))
  58. logger.info(
  59. "4.过去{} - {}的短期的考核分:{:.4f},自动确认系数后,{} 超短期的考核分:{:.4f},历史功率:{:.4f}".format(
  60. pre_data['C_TIME'][0], pre_data['C_TIME'].iloc[-1], dq_score, T, best_score, his_fix_score))
  61. coe[T]['score_m'] = round(best_score_m, 3)
  62. coe[T]['score_n'] = round(best_score_n, 3)
  63. coe[T]['acc_m'] = round(best_coe_m, 3)
  64. coe[T]['acc_n'] = round(best_coe_n, 3)
  65. logger.info("系数轮询后,最终调整的系数为:{}".format(coe))
  66. def prepare_request_body(df, col_power, col_pre):
  67. """
  68. 准备请求体,动态保留MongoDB中的所有字段
  69. """
  70. data = df.copy()
  71. # 转换时间格式为字符串
  72. if 'dateTime' in data.columns and isinstance(data['dateTime'].iloc[0], datetime):
  73. data['dateTime'] = data['dateTime'].dt.strftime('%Y-%m-%d %H:%M:%S')
  74. data['model'] = col_pre
  75. # 排除不需要的字段(如果有)
  76. exclude_fields = ['_id'] # 通常排除MongoDB的默认_id字段
  77. # 获取所有字段名(排除不需要的字段)
  78. available_fields = [col for col in data.columns if col not in exclude_fields]
  79. # 转换为记录列表(保留所有字段)
  80. data = data[available_fields].to_dict('records')
  81. # 构造请求体(固定部分+动态数据部分)
  82. request_body = {
  83. "stationCode": "J00600",
  84. "realPowerColumn": col_power,
  85. "ablePowerColumn": col_power,
  86. "predictPowerColumn": col_pre,
  87. "inStalledCapacityName": 153,
  88. "computTypeEnum": "E2",
  89. "computMeasEnum": "E2",
  90. "openCapacityName": 153,
  91. "onGridEnergy": 0,
  92. "price": 0,
  93. "fault": -99,
  94. "colTime": "dateTime", #时间列名(可选,要与上面'dateTime一致')
  95. # "computPowersEnum": "E4" # 计算功率类型(可选)
  96. "data": data # MongoDB数据
  97. }
  98. return request_body
  99. def calculate_acc(api_url, request_body):
  100. """
  101. 调用API接口
  102. """
  103. headers = {
  104. 'Content-Type': 'application/json',
  105. 'Accept': 'application/json'
  106. }
  107. try:
  108. response = requests.post(
  109. api_url,
  110. data=json.dumps(request_body, ensure_ascii=False),
  111. headers=headers
  112. )
  113. result = response.json()
  114. if response.status_code == 200:
  115. acc = np.average([res['accuracy'] for res in result])
  116. # ass = np.average([res['accuracyAssessment'] for res in result])
  117. print("111111111")
  118. return acc, 0
  119. else:
  120. logger.info(f"失败:{result['status']},{result['error']}")
  121. print(f"失败:{result['status']},{result['error']}")
  122. print("22222222")
  123. except requests.exceptions.RequestException as e:
  124. print(f"API调用失败: {e}")
  125. print("333333333")
  126. return None
  127. def history_error(data, col_power, col_pre):
  128. data['error'] = data[col_power] - data[col_pre]
  129. data['error'] = data['error'].round(2)
  130. data.reset_index(drop=True, inplace=True)
  131. # 用前面5个点的平均error,和象心力相加
  132. numbers = len(data) - 5
  133. datas = [data.iloc[x: x+5, :].reset_index(drop=True) for x in range(0, numbers)]
  134. data_error = [np.mean(d.iloc[0:5, -1]) for d in datas]
  135. pad_data_error = np.pad(data_error, (5, 0), mode='constant', constant_values=0)
  136. data['his_fix'] = data[col_pre] + pad_data_error
  137. data = data.iloc[5:, :].reset_index(drop=True)
  138. data.loc[data[col_pre] <= 0, ['his_fix']] = 0
  139. data['dateTime'] = pd.to_datetime(data['dateTime'])
  140. data = data.loc[:, ['dateTime', col_power, col_pre, 'his_fix']]
  141. # data.to_csv('J01080原始数据.csv', index=False)
  142. return data
  143. if __name__ == "__main__":
  144. args = {
  145. 'mongodb_database': 'ldw_ftp',
  146. 'mongodb_read_table': 'j00600',
  147. # 'timeBegin': '2025-01-01 00:00:00',
  148. # 'timeEnd': '2025-01-03 23:45:00'
  149. }
  150. data = get_data_from_mongo(args).sort_values(by='dateTime', ascending=True)
  151. pre_data = history_error(data, col_power='realPower', col_pre='dq')
  152. for point in range(0, 16, 1):
  153. iterate_coe(pre_data, point, 'realPower', 'dq')
  154. run_code = 0