123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm_pre.py
- # @Time :2025/2/13 10:52
- # @Author :David
- # @Company: shenyang JY
- import json, copy
- import numpy as np
- from flask import Flask, request
- import logging, argparse, traceback
- from common.database_dml import *
- from common.processing_data_common import missing_features, str_to_list
- from data_processing.data_operation.data_handler import DataHandler
- from threading import Lock
- import time, yaml
- model_lock = Lock()
- from itertools import chain
- from common.logs import Log
- from tf_lstm import TSHandler
- # logger = Log('tf_bp').logger()
- logger = Log('tf_bp').logger
- np.random.seed(42) # NumPy随机种子
- # tf.set_random_seed(42) # TensorFlow随机种子
- app = Flask('tf_lstm_pre——service')
- with app.app_context():
- with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f:
- args = yaml.safe_load(f)
- dh = DataHandler(logger, args)
- ts = TSHandler(logger, args)
- global opt
- @app.before_request
- def update_config():
- # ------------ 整理参数,整合请求参数 ------------
- args_dict = request.values.to_dict()
- args_dict['features'] = args_dict['features'].split(',')
- args.update(args_dict)
- opt = argparse.Namespace(**args)
- dh.opt = opt
- ts.opt = opt
- logger.info(args)
- @app.route('/nn_lstm_predict', methods=['POST'])
- def model_prediction_bp():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- pre_data = get_data_from_mongo(args)
- feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
- scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler, args)
- ts.get_model(args)
- # result = bp.predict(scaled_pre_x, args)
- res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
- pre_data['power_forecast'] = res[:len(pre_data)]
- pre_data['farm_id'] = 'J00083'
- pre_data['cdq'] = 1
- pre_data['dq'] = 1
- pre_data['zq'] = 1
- pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
- pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
- pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
- pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
- pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
- insert_data_into_mongo(pre_data, args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10114, threads=4)
- print("server start!")
- # ------------------------测试代码------------------------
- # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
- # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
- # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- # args_dict['features'] = args_dict['features'].split(',')
- # arguments.update(args_dict)
- # dh = DataHandler(logger, arguments)
- # ts = TSHandler(logger)
- # opt = argparse.Namespace(**arguments)
- #
- # opt.Model['input_size'] = len(opt.features)
- # pre_data = get_data_from_mongo(args_dict)
- # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
- # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
- # ts.get_model(arguments)
- # result = ts.predict(pre_x)
- # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
- # pre_data['power_forecast'] = result1[:len(pre_data)]
- # pre_data['farm_id'] = 'J00083'
- # pre_data['cdq'] = 1
- # pre_data['dq'] = 1
- # pre_data['zq'] = 1
- # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
- # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
- #
- # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
- # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
- # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
- #
- # insert_data_into_mongo(pre_data, arguments)
|