tf_bp_train.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp_train.py
  4. # @Time :2025/2/13 13:35
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_koi.tf_bp import BPHandler
  15. from common.database_dml import *
  16. import matplotlib.pyplot as plt
  17. from common.logs import Log
  18. logger = logging.getLogger()
  19. # logger = Log('models-processing').logger
  20. np.random.seed(42) # NumPy随机种子
  21. # tf.set_random_seed(42) # TensorFlow随机种子
  22. app = Flask('tf_bp_train——service')
  23. with app.app_context():
  24. with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f:
  25. args = yaml.safe_load(f)
  26. dh = DataHandler(logger, args)
  27. bp = BPHandler(logger)
  28. global opt
  29. @app.before_request
  30. def update_config():
  31. # ------------ 整理参数,整合请求参数 ------------
  32. args_dict = request.values.to_dict()
  33. args_dict['features'] = args_dict['features'].split(',')
  34. args.update(args_dict)
  35. opt = argparse.Namespace(**args)
  36. dh.opt = opt
  37. bp.opt = opt
  38. logger.info(args)
  39. @app.route('/nn_bp_training', methods=['POST'])
  40. def model_training_bp():
  41. # 获取程序开始时间
  42. start_time = time.time()
  43. result = {}
  44. success = 0
  45. print("Program starts execution!")
  46. # try:
  47. # ------------ 获取数据,预处理训练数据 ------------
  48. train_data = get_data_from_mongo(args)
  49. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, bp_data=True)
  50. # ------------ 训练模型,保存模型 ------------
  51. bp.opt.Model['input_size'] = train_x.shape[1]
  52. bp_model = bp.training([train_x, train_y, valid_x, valid_y])
  53. args['params'] = json.dumps(args)
  54. args['descr'] = '测试'
  55. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  56. insert_trained_model_into_mongo(bp_model, args)
  57. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  58. success = 1
  59. # except Exception as e:
  60. # my_exception = traceback.format_exc()
  61. # my_exception.replace("\n", "\t")
  62. # result['msg'] = my_exception
  63. end_time = time.time()
  64. result['success'] = success
  65. result['args'] = args
  66. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  67. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  68. print("Program execution ends!")
  69. return result
  70. if __name__ == "__main__":
  71. print("Program starts execution!")
  72. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  73. logger = logging.getLogger("model_training_bp log")
  74. from waitress import serve
  75. serve(app, host="0.0.0.0", port=10111, threads=4)
  76. # print("server start!")
  77. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  78. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  79. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  80. # args_dict['features'] = args_dict['features'].split(',')
  81. # arguments.update(args_dict)
  82. # dh = DataHandler(logger, arguments)
  83. # bp = BPHandler(logger)
  84. # opt = argparse.Namespace(**arguments)
  85. # opt.Model['input_size'] = len(opt.features)
  86. # train_data = get_data_from_mongo(args_dict)
  87. # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
  88. # bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
  89. #
  90. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  91. # args_dict['params'] = arguments
  92. # args_dict['descr'] = '测试'
  93. # insert_trained_model_into_mongo(bp_model, args_dict)
  94. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)