tf_bp_pre.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp_pre.py
  4. # @Time :2025/2/13 13:35
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import logging, argparse, traceback
  11. from common.database_dml import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. model_lock = Lock()
  17. from itertools import chain
  18. from common.logs import Log
  19. from tf_bp import BPHandler
  20. # logger = Log('tf_bp').logger()
  21. logger = Log('tf_bp').logger
  22. np.random.seed(42) # NumPy随机种子
  23. # tf.set_random_seed(42) # TensorFlow随机种子
  24. app = Flask('tf_bp_pre——service')
  25. with app.app_context():
  26. with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f:
  27. args = yaml.safe_load(f)
  28. dh = DataHandler(logger, args)
  29. bp = BPHandler(logger, args)
  30. global opt
  31. @app.before_request
  32. def update_config():
  33. # ------------ 整理参数,整合请求参数 ------------
  34. args_dict = request.values.to_dict()
  35. args_dict['features'] = args_dict['features'].split(',')
  36. args.update(args_dict)
  37. opt = argparse.Namespace(**args)
  38. dh.opt = opt
  39. bp.opt = opt
  40. logger.info(args)
  41. @app.route('/nn_bp_predict', methods=['POST'])
  42. def model_prediction_bp():
  43. # 获取程序开始时间
  44. start_time = time.time()
  45. result = {}
  46. success = 0
  47. print("Program starts execution!")
  48. try:
  49. # ------------ 获取数据,预处理预测数据------------
  50. pre_data = get_data_from_mongo(args)
  51. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  52. scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler, bp_data=True)
  53. bp.get_model(args)
  54. res = list(chain.from_iterable(target_scaler.inverse_transform([bp.predict(scaled_pre_x).flatten()])))
  55. pre_data['power_forecast'] = res[:len(pre_data)]
  56. pre_data['farm_id'] = 'J00083'
  57. pre_data['cdq'] = 1
  58. pre_data['dq'] = 1
  59. pre_data['zq'] = 1
  60. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  61. pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  62. pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  63. pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  64. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  65. insert_data_into_mongo(pre_data, args)
  66. success = 1
  67. except Exception as e:
  68. my_exception = traceback.format_exc()
  69. my_exception.replace("\n", "\t")
  70. result['msg'] = my_exception
  71. end_time = time.time()
  72. result['success'] = success
  73. result['args'] = args
  74. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  75. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  76. print("Program execution ends!")
  77. return result
  78. if __name__ == "__main__":
  79. print("Program starts execution!")
  80. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  81. logger = logging.getLogger("model_training_bp log")
  82. from waitress import serve
  83. serve(app, host="0.0.0.0", port=10110, threads=4)
  84. print("server start!")
  85. # ------------------------测试代码------------------------
  86. args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  87. 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  88. 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  89. # args_dict['features'] = args_dict['features'].split(',')
  90. # arguments.update(args_dict)
  91. # dh = DataHandler(logger, arguments)
  92. # bp = BPHandler(logger)
  93. # opt = argparse.Namespace(**arguments)
  94. #
  95. # opt.Model['input_size'] = len(opt.features)
  96. # pre_data = get_data_from_mongo(args_dict)
  97. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  98. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt, bp_data=True)
  99. # bp.get_model(arguments)
  100. # result = bp.predict(pre_x)
  101. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  102. # pre_data['power_forecast'] = result1[:len(pre_data)]
  103. # pre_data['farm_id'] = 'J00083'
  104. # pre_data['cdq'] = 1
  105. # pre_data['dq'] = 1
  106. # pre_data['zq'] = 1
  107. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  108. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  109. #
  110. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  111. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  112. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  113. #
  114. # insert_data_into_mongo(pre_data, arguments)