tf_bp_pre.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp_pre.py
  4. # @Time :2025/2/13 13:35
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import logging, argparse, traceback
  11. from common.database_dml_koi import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. model_lock = Lock()
  17. from itertools import chain
  18. from common.logs import Log
  19. from tf_bp import BPHandler
  20. logger = Log('tf_bp').logger
  21. np.random.seed(42) # NumPy随机种子
  22. # tf.set_random_seed(42) # TensorFlow随机种子
  23. app = Flask('tf_bp_pre——service')
  24. with app.app_context():
  25. with open('./models_processing/model_koi/bp.yaml', 'r', encoding='utf-8') as f:
  26. args = yaml.safe_load(f)
  27. dh = DataHandler(logger, args)
  28. bp = BPHandler(logger, args)
  29. global opt
  30. @app.before_request
  31. def update_config():
  32. # ------------ 整理参数,整合请求参数 ------------
  33. args_dict = request.values.to_dict()
  34. args_dict['features'] = args_dict['features'].split(',')
  35. args.update(args_dict)
  36. opt = argparse.Namespace(**args)
  37. dh.opt = opt
  38. bp.opt = opt
  39. g.opt = opt
  40. logger.info(args)
  41. @app.route('/nn_bp_predict', methods=['POST'])
  42. def model_prediction_bp():
  43. # 获取程序开始时间
  44. start_time = time.time()
  45. result = {}
  46. success = 0
  47. print("Program starts execution!")
  48. try:
  49. # ------------ 获取数据,预处理预测数据------------
  50. pre_data = get_data_from_mongo(args)
  51. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  52. scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler, bp_data=True)
  53. bp.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
  54. # ------------ 获取模型,预测结果------------
  55. bp.get_model(args)
  56. res = list(chain.from_iterable(target_scaler.inverse_transform([bp.predict(scaled_pre_x).flatten()])))
  57. pre_data['power_forecast'] = res[:len(pre_data)]
  58. pre_data['farm_id'] = 'J00083'
  59. pre_data['cdq'] = 1
  60. pre_data['dq'] = 1
  61. pre_data['zq'] = 1
  62. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  63. pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  64. pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  65. pre_data.loc[pre_data['power_forecast'] > g.opt.cap, 'power_forecast'] = g.opt.cap
  66. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  67. insert_data_into_mongo(pre_data, args)
  68. success = 1
  69. except Exception as e:
  70. my_exception = traceback.format_exc()
  71. my_exception.replace("\n", "\t")
  72. result['msg'] = my_exception
  73. end_time = time.time()
  74. result['success'] = success
  75. result['args'] = args
  76. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  77. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  78. print("Program execution ends!")
  79. return result
  80. if __name__ == "__main__":
  81. print("Program starts execution!")
  82. from waitress import serve
  83. serve(app, host="0.0.0.0", port=10110)
  84. print("server start!")
  85. # ------------------------测试代码------------------------
  86. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  87. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  88. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  89. # args_dict['features'] = args_dict['features'].split(',')
  90. # arguments.update(args_dict)
  91. # dh = DataHandler(logger, arguments)
  92. # bp = BPHandler(logger)
  93. # opt = argparse.Namespace(**arguments)
  94. #
  95. # opt.Model['input_size'] = len(opt.features)
  96. # pre_data = get_data_from_mongo(args_dict)
  97. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  98. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt, bp_data=True)
  99. # bp.get_model(arguments)
  100. # result = bp.predict(pre_x)
  101. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  102. # pre_data['power_forecast'] = result1[:len(pre_data)]
  103. # pre_data['farm_id'] = 'J00083'
  104. # pre_data['cdq'] = 1
  105. # pre_data['dq'] = 1
  106. # pre_data['zq'] = 1
  107. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  108. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  109. #
  110. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  111. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  112. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  113. #
  114. # insert_data_into_mongo(pre_data, arguments)