123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- import numpy as np
- from sklearn.model_selection import train_test_split
- from flask import Flask,request
- import time
- import traceback
- import logging
- from sklearn.preprocessing import MinMaxScaler
- from io import BytesIO
- import joblib
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import LSTM, Dense, Dropout
- from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
- import tensorflow as tf
- from common.database_dml import get_data_from_mongo,insert_h5_model_into_mongo
- from common.processing_data_common import missing_features,str_to_list
- import time
- import random
- import matplotlib.pyplot as plt
- app = Flask('model_training_bp——service')
- def rmse(y_true, y_pred):
- return tf.math.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))
- def draw_loss(history):
- #绘制训练集和验证集损失
- plt.figure(figsize=(20, 8))
- plt.plot(history.history['loss'], label='Training Loss')
- plt.plot(history.history['val_loss'], label='Validation Loss')
- plt.title('Loss Curve')
- plt.xlabel('Epochs')
- plt.ylabel('Loss')
- plt.legend()
- plt.show()
- # 创建时间序列数据
- def build_model(data, args):
- sleep_time = random.uniform(1, 20) # 生成 5 到 20 之间的随机浮动秒数
- time.sleep(sleep_time)
- tf.keras.backend.clear_session() # 清除当前的图和会话
- # 设置随机种子
- np.random.seed(42) # NumPy随机种子
- tf.random.set_seed(42) # TensorFlow随机种子
- col_time,features,target = args['col_time'], str_to_list(args['features']),args['target']
- if 'is_limit' in data.columns:
- data = data[data['is_limit']==False]
- # 清洗特征平均缺失率大于20%的天
- data = missing_features(data, features, col_time)
- train_data = data.sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
- # 创建特征和目标的标准化器
- feature_scaler = MinMaxScaler(feature_range=(0, 1))
- target_scaler = MinMaxScaler(feature_range=(0, 1))
- # 标准化特征和目标
- scaled_features = feature_scaler.fit_transform(train_data[features])
- scaled_target = target_scaler.fit_transform(train_data[[target]])
- # 保存两个scaler
- feature_scaler_bytes = BytesIO()
- joblib.dump(feature_scaler, feature_scaler_bytes)
- feature_scaler_bytes.seek(0) # Reset pointer to the beginning of the byte stream
- target_scaler_bytes = BytesIO()
- joblib.dump(target_scaler, target_scaler_bytes)
- target_scaler_bytes.seek(0)
- # 划分训练集和测试集
- X_train, X_test, y_train, y_test = train_test_split(scaled_features, scaled_target, test_size=0.2, random_state=43)
- # 构建 LSTM 模型
- model = Sequential([
- Dense(64, input_dim=X_train.shape[1], activation='relu'), # 输入层和隐藏层,10个神经元
- Dropout(0.2),
- Dense(32, activation='relu'), # 隐藏层,8个神经元
- Dropout(0.3), # Dropout层,30%的神经元输出会被随机丢弃
- Dense(1, activation='linear') # 输出层,1个神经元(用于回归任务)
- ])
- # 编译模型
- model.compile(optimizer='adam', loss='mean_squared_error')
- # 定义 EarlyStopping 和 ReduceLROnPlateau 回调
- early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True, verbose=1)
- reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1)
- # 训练模型
- # 使用GPU进行训练
- with tf.device('/GPU:1'):
- history = model.fit(X_train, y_train,
- epochs=100,
- batch_size=32,
- validation_data=(X_test, y_test),
- verbose=2,
- shuffle=False,
- callbacks=[early_stopping, reduce_lr])
- # draw_loss(history)
- return model,feature_scaler_bytes,target_scaler_bytes
- @app.route('/model_training_bp', methods=['POST'])
- def model_training_bp():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args',args)
- logger.info(args)
- power_df = get_data_from_mongo(args)
- model,feature_scaler_bytes,target_scaler_bytes = build_model(power_df,args)
- insert_h5_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n","\t")
- result['msg'] = my_exception
- end_time = time.time()
-
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__=="__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10103,threads=4)
- print("server start!")
|