tf_lstm3_pre.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_pre.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import logging, argparse, traceback
  11. from common.database_dml_koi import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. from copy import deepcopy
  17. model_lock = Lock()
  18. from itertools import chain
  19. from common.logs import Log
  20. from models_processing.model_tf.tf_bilstm import TSHandler
  21. logger = Log('tf_ts3').logger
  22. np.random.seed(42) # NumPy随机种子
  23. # tf.set_random_seed(42) # TensorFlow随机种子
  24. app = Flask('tf_lstm3_pre——service')
  25. current_dir = os.path.dirname(os.path.abspath(__file__))
  26. with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
  27. global_config = yaml.safe_load(f) # 只读的全局配置
  28. @app.before_request
  29. def update_config():
  30. # ------------ 整理参数,整合请求参数 ------------
  31. # 深拷贝全局配置 + 合并请求参数
  32. current_config = deepcopy(global_config)
  33. request_args = request.values.to_dict()
  34. # features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
  35. request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
  36. current_config.update(request_args)
  37. # 存储到请求上下文
  38. g.opt = argparse.Namespace(**current_config)
  39. g.dh = DataHandler(logger, current_config) # 每个请求独立实例
  40. g.ts = TSHandler(logger, current_config)
  41. @app.route('/tf_lstm3_predict', methods=['POST'])
  42. def model_prediction_bp():
  43. # 获取程序开始时间
  44. start_time = time.time()
  45. result = {}
  46. success = 0
  47. dh = g.dh
  48. ts = g.ts
  49. args = deepcopy(g.opt.__dict__)
  50. logger.info("Program starts execution!")
  51. try:
  52. pre_data = get_data_from_mongo(args)
  53. if args.get('algorithm_test', 0):
  54. field_mapping = {'clearsky_ghi': 'clearskyGhi', 'dni_calcd': 'dniCalcd','surface_pressure': 'surfacePressure'}
  55. pre_data = pre_data.rename(columns=field_mapping)
  56. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  57. ts.opt.cap = round(target_scaler.transform(np.array([[float(args['cap'])]]))[0, 0], 2)
  58. ts.get_model(args)
  59. dh.opt.features = json.loads(ts.model_params)['Model']['features'].split(',')
  60. scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler, time_series=3)
  61. res = list(chain.from_iterable(target_scaler.inverse_transform(ts.predict(scaled_pre_x))))
  62. pre_data['farm_id'] = args.get('farm_id', 'null')
  63. if int(args.get('algorithm_test', 0)):
  64. pre_data[args['model_name']] = res[:len(pre_data)]
  65. pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
  66. pre_data = pre_data[['dateTime', 'farm_id', args['target'], args['model_name'], 'dq']]
  67. pre_data = pre_data.melt(id_vars=['dateTime', 'farm_id', args['target']], var_name='model', value_name='power_forecast')
  68. res_cols = ['dateTime', 'power_forecast', 'farm_id', args['target'], 'model']
  69. if 'howLongAgo' in args:
  70. pre_data['howLongAgo'] = int(args['howLongAgo'])
  71. res_cols += ['howLongAgo']
  72. else:
  73. pre_data['power_forecast'] = res[:len(pre_data)]
  74. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  75. res_cols = ['date_time', 'power_forecast', 'farm_id']
  76. pre_data = pre_data[res_cols]
  77. pre_data.loc[:, 'power_forecast'] = pre_data['power_forecast'].round(2)
  78. pre_data.loc[pre_data['power_forecast'] > float(args['cap']), 'power_forecast'] = float(args['cap'])
  79. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  80. insert_data_into_mongo(pre_data, args)
  81. success = 1
  82. except Exception as e:
  83. my_exception = traceback.format_exc()
  84. my_exception.replace("\n", "\t")
  85. result['msg'] = my_exception
  86. end_time = time.time()
  87. result['success'] = success
  88. result['args'] = args
  89. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  90. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  91. print("Program execution ends!")
  92. return result
  93. if __name__ == "__main__":
  94. print("Program starts execution!")
  95. from waitress import serve
  96. serve(app, host="0.0.0.0", port=10122,
  97. threads=8, # 指定线程数(默认4,根据硬件调整)
  98. channel_timeout=600 # 连接超时时间(秒)
  99. )
  100. print("server start!")
  101. # ------------------------测试代码------------------------
  102. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  103. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  104. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  105. # args_dict['features'] = args_dict['features'].split(',')
  106. # arguments.update(args_dict)
  107. # dh = DataHandler(logger, arguments)
  108. # ts = TSHandler(logger)
  109. # opt = argparse.Namespace(**arguments)
  110. #
  111. # opt.Model['input_size'] = len(opt.features)
  112. # pre_data = get_data_from_mongo(args_dict)
  113. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  114. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
  115. # ts.get_model(arguments)
  116. # result = ts.predict(pre_x)
  117. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  118. # pre_data['power_forecast'] = result1[:len(pre_data)]
  119. # pre_data['farm_id'] = 'J00083'
  120. # pre_data['cdq'] = 1
  121. # pre_data['dq'] = 1
  122. # pre_data['zq'] = 1
  123. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  124. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  125. #
  126. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  127. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  128. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  129. #
  130. # insert_data_into_mongo(pre_data, arguments)