tf_lstm_train.py 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, jsonify
  10. import traceback, uuid
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml, threading
  14. from models_processing.model_koi.tf_lstm import TSHandler
  15. from common.database_dml_koi import *
  16. from common.logs import Log
  17. logger = logging.getLogger()
  18. # logger = Log('models-processing').logger
  19. np.random.seed(42) # NumPy随机种子
  20. # tf.set_random_seed(42) # TensorFlow随机种子
  21. app = Flask('tf_lstm_train——service')
  22. with app.app_context():
  23. with open('../model_koi/lstm.yaml', 'r', encoding='utf-8') as f:
  24. args = yaml.safe_load(f)
  25. dh = DataHandler(logger, args)
  26. ts = TSHandler(logger, args)
  27. global opt
  28. @app.before_request
  29. def update_config():
  30. # ------------ 整理参数,整合请求参数 ------------
  31. args_dict = request.values.to_dict()
  32. args_dict['features'] = args_dict['features'].split(',')
  33. args.update(args_dict)
  34. opt = argparse.Namespace(**args)
  35. dh.opt = opt
  36. ts.opt = opt
  37. logger.info(args)
  38. @app.route('/nn_lstm_training', methods=['POST'])
  39. def model_training_bp():
  40. # 获取程序开始时间
  41. start_time = time.time()
  42. result = {}
  43. print("Program starts execution!")
  44. try:
  45. # ------------ 获取数据,预处理训练数据 ------------
  46. train_data = get_data_from_mongo(args)
  47. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  48. # ------------ 训练模型,保存模型 ------------
  49. ts.opt.Model['input_size'] = train_x.shape[2]
  50. ts_model = ts.training([train_x, valid_x, train_y, valid_y])
  51. args['params'] = json.dumps(args)
  52. args['descr'] = '测试'
  53. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  54. insert_trained_model_into_mongo(ts_model, args)
  55. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  56. success = 1
  57. except Exception as e:
  58. my_exception = traceback.format_exc()
  59. my_exception.replace("\n", "\t")
  60. result['msg'] = my_exception
  61. end_time = time.time()
  62. result['success'] = success
  63. result['args'] = args
  64. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  65. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  66. print("Program execution ends!")
  67. return result
  68. if __name__ == "__main__":
  69. print("Program starts execution!")
  70. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  71. logger = logging.getLogger("model_training_bp log")
  72. from waitress import serve
  73. serve(app, host="0.0.0.0", port=10115, threads=4)
  74. print("server start!")
  75. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  76. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  77. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  78. # args_dict['features'] = args_dict['features'].split(',')
  79. # args.update(args_dict)
  80. # dh = DataHandler(logger, args)
  81. # ts = TSHandler(logger, args)
  82. # opt = argparse.Namespace(**args)
  83. # opt.Model['input_size'] = len(opt.features)
  84. # train_data = get_data_from_mongo(args_dict)
  85. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  86. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  87. #
  88. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  89. # args_dict['params'] = args
  90. # args_dict['descr'] = '测试'
  91. # insert_trained_model_into_mongo(ts_model, args_dict)
  92. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)