tf_lstm_pre.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_pre.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import logging, argparse, traceback
  11. from common.database_dml_koi import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. model_lock = Lock()
  17. from itertools import chain
  18. from common.logs import Log
  19. from tf_lstm import TSHandler
  20. # logger = Log('tf_bp').logger()
  21. logger = Log('tf_ts').logger
  22. np.random.seed(42) # NumPy随机种子
  23. # tf.set_random_seed(42) # TensorFlow随机种子
  24. app = Flask('tf_lstm_pre——service')
  25. with app.app_context():
  26. with open('./models_processing/model_koi/bp.yaml', 'r', encoding='utf-8') as f:
  27. args = yaml.safe_load(f)
  28. dh = DataHandler(logger, args)
  29. ts = TSHandler(logger, args)
  30. @app.before_request
  31. def update_config():
  32. # ------------ 整理参数,整合请求参数 ------------
  33. args_dict = request.values.to_dict()
  34. args_dict['features'] = args_dict['features'].split(',')
  35. args.update(args_dict)
  36. opt = argparse.Namespace(**args)
  37. dh.opt = opt
  38. ts.opt = opt
  39. g.opt = opt
  40. logger.info(args)
  41. @app.route('/nn_lstm_predict', methods=['POST'])
  42. def model_prediction_bp():
  43. # 获取程序开始时间
  44. start_time = time.time()
  45. result = {}
  46. success = 0
  47. print("Program starts execution!")
  48. try:
  49. pre_data = get_data_from_mongo(args)
  50. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  51. scaled_pre_x = dh.pre_data_handler(pre_data, feature_scaler)
  52. ts.opt.cap = round(target_scaler.transform(np.array([[args['cap']]]))[0, 0], 2)
  53. ts.get_model(args)
  54. # result = bp.predict(scaled_pre_x, args)
  55. res = list(chain.from_iterable(target_scaler.inverse_transform([ts.predict(scaled_pre_x).flatten()])))
  56. pre_data['power_forecast'] = res[:len(pre_data)]
  57. pre_data['farm_id'] = 'J00083'
  58. pre_data['cdq'] = args.get('cdq', 1)
  59. pre_data['dq'] = args.get('dq', 1)
  60. pre_data['zq'] = args.get('zq', 1)
  61. res_cols = ['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']
  62. res_cols += [args['target']] if args['algorithm_test'] else res_cols
  63. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  64. pre_data = pre_data[res_cols]
  65. pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  66. pre_data.loc[pre_data['power_forecast'] > g.opt.cap, 'power_forecast'] = g.opt.cap
  67. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  68. insert_data_into_mongo(pre_data, args)
  69. success = 1
  70. except Exception as e:
  71. my_exception = traceback.format_exc()
  72. my_exception.replace("\n", "\t")
  73. result['msg'] = my_exception
  74. end_time = time.time()
  75. result['success'] = success
  76. result['args'] = args
  77. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  78. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  79. print("Program execution ends!")
  80. return result
  81. if __name__ == "__main__":
  82. print("Program starts execution!")
  83. from waitress import serve
  84. serve(app, host="0.0.0.0", port=10114)
  85. print("server start!")
  86. # ------------------------测试代码------------------------
  87. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  88. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  89. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  90. # args_dict['features'] = args_dict['features'].split(',')
  91. # arguments.update(args_dict)
  92. # dh = DataHandler(logger, arguments)
  93. # ts = TSHandler(logger)
  94. # opt = argparse.Namespace(**arguments)
  95. #
  96. # opt.Model['input_size'] = len(opt.features)
  97. # pre_data = get_data_from_mongo(args_dict)
  98. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  99. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
  100. # ts.get_model(arguments)
  101. # result = ts.predict(pre_x)
  102. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  103. # pre_data['power_forecast'] = result1[:len(pre_data)]
  104. # pre_data['farm_id'] = 'J00083'
  105. # pre_data['cdq'] = 1
  106. # pre_data['dq'] = 1
  107. # pre_data['zq'] = 1
  108. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  109. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  110. #
  111. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  112. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  113. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  114. #
  115. # insert_data_into_mongo(pre_data, arguments)