123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :tf_lstm.py
- # @Time :2025/2/12 14:03
- # @Author :David
- # @Company: shenyang JY
- from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten, LayerNormalization, Dropout
- from tensorflow.keras.models import Model, load_model
- from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
- from tensorflow.keras import optimizers, regularizers
- from models_processing.model_tf.losses import region_loss
- import numpy as np
- from common.database_dml_koi import *
- from models_processing.model_tf.settings import set_deterministic
- from threading import Lock
- import argparse
- model_lock = Lock()
- set_deterministic(42)
- class TSHandler(object):
- def __init__(self, logger, args):
- self.logger = logger
- self.opt = argparse.Namespace(**args)
- self.model = None
- self.model_params = None
- def get_model(self, args):
- """
- 单例模式+线程锁,防止在异步加载时引发线程安全
- """
- try:
- with model_lock:
- loss = region_loss(self.opt)
- self.model, self.model_params = get_keras_model_from_mongo(args, {type(loss).__name__: loss})
- except Exception as e:
- self.logger.info("加载模型权重失败:{}".format(e.args))
- @staticmethod
- def get_keras_model(opt, time_series=1, lstm_type=1):
- loss = region_loss(opt)
- l1_reg = regularizers.l1(opt.Model['lambda_value_1'])
- l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
- nwp_input = Input(shape=(opt.Model['time_step']*time_series, opt.Model['input_size']), name='nwp')
- con1 = Conv1D(filters=64, kernel_size=5, strides=1, padding='valid', activation='relu', kernel_regularizer=l2_reg)(nwp_input)
- con1_p = MaxPooling1D(pool_size=5, strides=1, padding='valid', data_format='channels_last')(con1)
- nwp_lstm = LSTM(units=opt.Model['hidden_size'], return_sequences=False, kernel_regularizer=l2_reg)(con1_p)
- if lstm_type == 2:
- output = Dense(opt.Model['time_step'], name='cdq_output')(nwp_lstm)
- else:
- output = Dense(opt.Model['time_step']*time_series, name='cdq_output')(nwp_lstm)
- model = Model(nwp_input, output)
- adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
- model.compile(loss=loss, optimizer=adam)
- return model
- @staticmethod
- def get_tcn_model(opt, time_series=1):
- # 参数设置
- loss = region_loss(opt)
- time_steps = 48 # 输入时间步长 (16*3)
- output_steps = 16 # 输出时间步长
- hidden_size = opt.Model.get('hidden_size', 64)
- l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
- dropout_rate = opt.Model.get('dropout_rate', 0.2)
- # 输入层
- nwp_input = Input(shape=(opt.Model['time_step']*time_series, opt.Model['input_size']), name='nwp')
- # 初始卷积层 (将通道数扩展到hidden_size)
- x = Conv1D(filters=hidden_size, kernel_size=3, strides=1, padding='causal', activation='relu', kernel_regularizer=l2_reg)(nwp_input)
- # 时序卷积块 (TCN块)
- for d in [1, 2, 4, 8]: # 扩张系数
- # 扩张因果卷积
- conv = Conv1D(filters=hidden_size, kernel_size=3, strides=1,
- padding='causal', activation='relu',
- dilation_rate=d,
- kernel_regularizer=l2_reg)
- x = conv(x)
- # 残差连接
- skip = Conv1D(filters=hidden_size, kernel_size=1,
- padding='same')(x)
- # 层归一化
- x = LayerNormalization()(x)
- x = tf.keras.activations.relu(x)
- x = Dropout(dropout_rate)(x)
- x = x + skip # 残差连接
- # 提取中间16个时间步的表示
- # 这里我们使用全局平均池化或直接切片
- # 方法1: 使用全局平均池化然后上采样
- # x = tf.reduce_mean(x, axis=1, keepdims=True)
- # x = tf.tile(x, [1, output_steps, 1])
- # 方法2: 直接切片中间16个时间步 (更符合你的需求)
- # 由于是因果卷积,中间时间步大致对应输入的中间部分
- start_idx = (time_steps - output_steps) // 2
- x = x[:, start_idx:start_idx + output_steps, :]
- # 输出层
- output = Dense(output_steps, activation=None, name='cdq_output')(x)
- # 创建模型
- model = Model(nwp_input, output)
- # 优化器
- adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
- model.compile(loss=loss, optimizer=adam)
- return model
- def train_init(self):
- try:
- # 进行加强训练,支持修模
- loss = region_loss(self.opt)
- base_train_model, self.model_params = get_keras_model_from_mongo(vars(self.opt), {type(loss).__name__: loss})
- base_train_model.summary()
- self.logger.info("已加载加强训练基础模型")
- return base_train_model
- except Exception as e:
- self.logger.info("加载加强训练模型权重失败:{}".format(e.args))
- return False
- def training(self, model, train_and_valid_data):
- model.summary()
- train_x, train_y, valid_x, valid_y = train_and_valid_data
- early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
- history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'],
- verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
- loss = np.round(history.history['loss'], decimals=5)
- val_loss = np.round(history.history['val_loss'], decimals=5)
- self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
- self.logger.info("训练集损失函数为:{}".format(loss))
- self.logger.info("验证集损失函数为:{}".format(val_loss))
- return model
- def predict(self, test_x, batch_size=1):
- result = self.model.predict(test_x, batch_size=batch_size)
- self.logger.info("执行预测方法")
- return result
- if __name__ == "__main__":
- run_code = 0
|