tf_lstm3_train.py 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, jsonify, g
  10. import traceback, uuid
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml, threading
  14. from copy import deepcopy
  15. from common.database_dml_koi import *
  16. from common.logs import Log
  17. logger = Log('tf_ts3').logger
  18. np.random.seed(42) # NumPy随机种子
  19. app = Flask('tf_lstm3_train——service')
  20. current_dir = os.path.dirname(os.path.abspath(__file__))
  21. with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
  22. global_config = yaml.safe_load(f) # 只读的全局配置
  23. @app.before_request
  24. def update_config():
  25. # ------------ 整理参数,整合请求参数 ------------
  26. # 深拷贝全局配置 + 合并请求参数
  27. current_config = deepcopy(global_config)
  28. request_args = request.values.to_dict()
  29. # features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
  30. request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
  31. request_args['time_series'] = request_args.get('time_series', 3)
  32. request_args['lstm_type'] = request_args.get('lstm_type', 1)
  33. current_config.update(request_args)
  34. # 存储到请求上下文
  35. g.opt = argparse.Namespace(**current_config)
  36. g.dh = DataHandler(logger, current_config) # 每个请求独立实例
  37. if int(request_args['lstm_type']) == 1:
  38. from models_processing.model_tf.tf_bilstm import TSHandler
  39. g.ts = TSHandler(logger, current_config)
  40. else:
  41. from models_processing.model_tf.tf_bilstm_2 import TSHandler2
  42. g.ts = TSHandler2(logger, current_config)
  43. @app.route('/tf_lstm3_training', methods=['POST'])
  44. def model_training_lstm3():
  45. # 获取程序开始时间
  46. start_time = time.time()
  47. result = {}
  48. success = 0
  49. dh = g.dh
  50. ts = g.ts
  51. args = deepcopy(g.opt.__dict__)
  52. logger.info("Program starts execution!")
  53. try:
  54. # ------------ 获取数据,预处理训练数据 ------------
  55. train_data = get_data_from_mongo(args)
  56. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'], lstm_type=3)
  57. ts.opt.cap = round(scaled_cap, 2)
  58. ts.opt.Model['input_size'] = len(dh.opt.features)
  59. # ------------ 训练模型,保存模型 ------------
  60. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  61. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  62. model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt, time_series=args['time_series'], use_bidirectional=ts.opt.use_bidirectional)
  63. if ts.opt.Model['add_train']:
  64. if model:
  65. feas = json.loads(ts.model_params)['features']
  66. if set(feas).issubset(set(dh.opt.features)):
  67. dh.opt.features = list(feas)
  68. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'], lstm_type=3)
  69. else:
  70. model = ts.get_keras_model(ts.opt, time_series=args['time_series'], use_bidirectional=ts.opt.use_bidirectional)
  71. logger.info("训练数据特征,不满足,加强训练模型特征")
  72. else:
  73. model = ts.get_keras_model(ts.opt, time_series=args['time_series'], use_bidirectional=ts.opt.use_bidirectional)
  74. ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
  75. args['Model']['features'] = ','.join(dh.opt.features)
  76. args['params'] = json.dumps(args)
  77. args['descr'] = 'lstm2'
  78. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  79. insert_trained_model_into_mongo(ts_model, args)
  80. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  81. success = 1
  82. except Exception as e:
  83. my_exception = traceback.format_exc()
  84. my_exception.replace("\n", "\t")
  85. result['msg'] = my_exception
  86. end_time = time.time()
  87. result['success'] = success
  88. result['args'] = args
  89. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  90. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  91. print("Program execution ends!")
  92. return result
  93. if __name__ == "__main__":
  94. print("Program starts execution!")
  95. from waitress import serve
  96. serve(app, host="0.0.0.0", port=10121,
  97. threads=8, # 指定线程数(默认4,根据硬件调整)
  98. channel_timeout=600 # 连接超时时间(秒)
  99. )
  100. print("server start!")
  101. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  102. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  103. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  104. # args_dict['features'] = args_dict['features'].split(',')
  105. # args.update(args_dict)
  106. # dh = DataHandler(logger, args)
  107. # ts = TSHandler(logger, args)
  108. # opt = argparse.Namespace(**args)
  109. # opt.Model['input_size'] = len(opt.features)
  110. # train_data = get_data_from_mongo(args_dict)
  111. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  112. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  113. #
  114. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  115. # args_dict['params'] = args
  116. # args_dict['descr'] = '测试'
  117. # insert_trained_model_into_mongo(ts_model, args_dict)
  118. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)