123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- # -*- coding: utf-8 -*-
- from plotly.subplots import make_subplots
- from flask import Flask,request
- import time
- import random
- import logging
- import traceback
- import os
- from common.database_dml import get_df_list_from_mongo,insert_data_into_mongo
- import plotly.express as px
- import plotly.graph_objects as go
- import pandas as pd
- import plotly.io as pio
- app = Flask('analysis_report——service')
- def put_analysis_report_to_html(args,df_clean,df_accuracy):
- col_time = args['col_time']
- col_x_env = args['col_x_env']
- col_x_pre = args['col_x_pre']
- label = args['label']
- label_pre = args['label_pre']
- farmId = args['farmId']
- df_overview = pd.DataFrame(
- {'数据开始时间': [df_clean[col_time].min()], '数据结束时间': [df_clean[col_time].max()], '数据总记录数': [df_clean.shape[0]]})
- overview_html = df_overview.to_html(classes='table table-bordered table-striped', index=False)
- # -------------------- 数据描述 --------------------
- describe_html = df_clean.describe().reset_index().rename(columns={'index': '统计量'}).to_html(
- classes='table table-bordered table-striped', index=False)
- # -------------------- 实测气象与实际功率散点图--------------------
- # 生成实际功率与辐照度的散点图
- fig_scatter = px.scatter(df_clean, x=col_x_env, y=label)
- # 自定义散点图布局
- fig_scatter.update_layout(
- template='seaborn',
- plot_bgcolor='rgba(255, 255, 255, 0.8)', # 背景色
- xaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)',
- title=col_x_env
- ),
- yaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)',
- title=label
- ),
- legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.7)', bordercolor='black', borderwidth=1)
- )
- # 将散点图保存为 HTML 片段
- scatter_html = pio.to_html(fig_scatter, full_html=False)
- # -------------------- 生成相关性热力图 --------------------
- # 计算相关矩阵
- correlation_matrix = df_clean.corr()
- # 生成热力图,带数值标签和新配色
- fig_heatmap = go.Figure(data=go.Heatmap(
- z=correlation_matrix.values,
- x=correlation_matrix.columns,
- y=correlation_matrix.columns,
- colorscale='RdBu', # 使用红蓝配色:正相关为蓝色,负相关为红色
- text=correlation_matrix.round(2).astype(str), # 将相关性值保留两位小数并转换为字符串
- texttemplate="%{text}", # 显示数值标签
- colorbar=dict(title='Correlation'),
- zmin=-1, zmax=1 # 设置颜色映射的范围
- ))
- # 自定义热力图布局
- fig_heatmap.update_layout(
- # title='Correlation Matrix Heatmap',
- xaxis=dict(tickangle=45),
- yaxis=dict(autorange='reversed'),
- template='seaborn'
- )
- # 将热力图保存为 HTML 片段
- corr_html = pio.to_html(fig_heatmap, full_html=False)
- # -------------------- 实测气象与预测气象趋势曲线 --------------------
- # 生成折线图(以 C_GLOBALR 和 NWP预测总辐射 为例)
- fig_line = px.line(df_clean, x=col_time, y=[col_x_env, col_x_pre], markers=True)
- # 自定义趋势图布局
- fig_line.update_layout(
- template='seaborn',
- # title=dict(text=f"{col_x_env}与{col_x_pre}趋势曲线",
- # x=0.5, font=dict(size=24, color='darkblue')),
- plot_bgcolor='rgba(255, 255, 255, 0.8)', # 改为白色背景
- xaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)', # 网格线颜色
- rangeslider=dict(visible=True), # 显示滚动条
- rangeselector=dict(visible=True) # 显示预设的时间范围选择器
- ),
- yaxis=dict(showgrid=True, gridcolor='rgba(200, 200, 200, 0.5)'),
- legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.7)', bordercolor='black', borderwidth=1)
- )
- # 将折线图保存为 HTML 片段
- env_pre_html = pio.to_html(fig_line, full_html=False)
- # -------------------- 实测气象与预测气象偏差密度曲线 --------------------
- df_clean['deviation'] = df_clean[col_x_pre] - df_clean[col_x_env]
- # 生成预测与实测辐照度偏差的密度曲线图
- # 生成偏差的密度图
- fig_density = px.histogram(df_clean, x='deviation', nbins=30, marginal='rug', opacity=0.75,
- histnorm='density')
- # 自定义密度曲线图布局
- fig_density.update_layout(
- template='seaborn',
- # # title=dict(text=f"{col_x_pre}与{col_x_env}偏差密度曲线",
- # x=0.5, font=dict(size=24, color='darkred')),
- plot_bgcolor='rgba(255, 255, 255, 0.8)',
- xaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)',
- title='偏差'
- ),
- yaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)',
- title='Density'
- ),
- legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.7)', bordercolor='black', borderwidth=1)
- )
- # 将密度曲线图保存为 HTML 片段
- density_html = pio.to_html(fig_density, full_html=False)
- # -------------------- 预测功率与实际功率曲线 --------------------
- # 生成折线图(以 C_GLOBALR 和 NWP预测总辐射 为例)
- fig_line = px.line(df_clean, x='dateTime', y=[label, label_pre], markers=True)
- # 自定义趋势图布局
- fig_line.update_layout(
- template='seaborn',
- # title=dict(text=f"{label_pre}与{label}曲线",
- # x=0.5, font=dict(size=24, color='darkblue')),
- plot_bgcolor='rgba(255, 255, 255, 0.8)', # 改为白色背景
- xaxis=dict(
- showgrid=True,
- gridcolor='rgba(200, 200, 200, 0.5)', # 网格线颜色
- rangeslider=dict(visible=True), # 显示滚动条
- rangeselector=dict(visible=True) # 显示预设的时间范围选择器
- ),
- yaxis=dict(showgrid=True, gridcolor='rgba(200, 200, 200, 0.5)'),
- legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.7)', bordercolor='black', borderwidth=1)
- )
- # 将折线图保存为 HTML 片段
- power_html = pio.to_html(fig_line, full_html=False)
- # -------------------- 准确率表展示--------------------
- acc_html = df_accuracy.to_html(classes='table table-bordered table-striped', index=False)
- # -------------------- 生成完整 HTML 页面 --------------------
- html_content = f"""
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="UTF-8">
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
- <title>Data Analysis Report</title>
- <!-- 引入 Bootstrap CSS -->
- <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
- <style>
- body {{
- background-color: #f4f4f9;
- font-family: Arial, sans-serif;
- padding: 20px;
- }}
- .container {{
- background-color: #fff;
- padding: 20px;
- border-radius: 10px;
- box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
- margin-bottom: 30px;
- }}
- h1 {{
- text-align: center;
- color: #333;
- margin-bottom: 20px;
- }}
- .plot-container {{
- margin: 20px 0;
- max-height: 500px; /* 限制高度 */
- overflow-y: auto; /* 显示垂直滚动条 */
- }}
- .table-container {{
- margin-top: 30px;
- overflow-x: auto; /* 水平滚动条 */
- max-width: 100%; /* 限制宽度 */
- white-space: nowrap; /* 防止内容换行 */
- }}
- table {{
- width: 100%;
- font-size: 12px; /* 设置字体大小为12px */
- }}
- th, td {{
- text-align: center; /* 表头和单元格文字居中 */
- }}
- </style>
- </head>
- <body>
- <div class="container">
- <h1>分析报告</h1>
- <!-- Pandas DataFrame 表格 -->
- <div class="table-container">
- <h2>1. 数据总览</h2>
- {overview_html}
- </div>
- <!-- Pandas DataFrame 表格 -->
- <div class="table-container">
- <h2>2. 数据描述</h2>
- {describe_html}
- </div>
- <div class="plot-container">
- <h2>3. 数据清洗后实测气象与实际功率散点图</h2>
- {scatter_html}
- </div>
- <div class="plot-container">
- <h2>4. 相关性分析</h2>
- {corr_html}
- </div>
- <div class="plot-container">
- <h2>5. 实测气象与预测气象曲线趋势</h2>
- {env_pre_html}
- </div>
- <div class="plot-container">
- <h2>6. 预测气象与实测气象偏差曲线</h2>
- {density_html}
- </div>
- <div class="plot-container">
- <h2>7. 预测功率与实际功率曲线对比</h2>
- {power_html}
- </div>
- <!-- Pandas DataFrame 表格 -->
- <div class="table-container">
- <h2>8. 准确率对比</h2>
- {acc_html}
- </div>
- </div>
- </body>
- </html>
- """
- filename = f"{farmId}_{int(time.time() * 1000)}_{random.randint(1000, 9999)}.html"
- # 保存为 HTML
- directory = '/usr/share/nginx/html'
- if not os.path.exists(directory):
- os.makedirs(directory)
- file_path = os.path.join(directory, filename)
- path = f"http://ds3:10010/{filename}"
- # 将 HTML 内容写入文件
- with open(file_path, "w", encoding="utf-8") as f:
- f.write(html_content)
- print("HTML report generated successfully!")
- return path
- @app.route('/analysis_report', methods=['POST'])
- def analysis_report():
- start_time = time.time()
- result = {}
- success = 0
- path = ""
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args',args)
- logger.info(args)
- #获取数据
- df_clean, df_accuracy = get_df_list_from_mongo(args)[0], get_df_list_from_mongo(args)[1]
- path = put_analysis_report_to_html(args, df_clean, df_accuracy)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n","\t")
- result['msg'] = my_exception
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- result['file_path'] = path
- print("Program execution ends!")
- return result
- if __name__=="__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("analysis_report log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10092)
- print("server start!")
|