tf_lstm_train.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, jsonify, g
  10. import traceback, uuid
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml, threading
  14. from copy import deepcopy
  15. from models_processing.model_tf.tf_lstm import TSHandler
  16. from common.database_dml_koi import *
  17. from common.logs import Log
  18. from common.data_utils import deep_update
  19. logger = Log('tf_ts').logger
  20. np.random.seed(42) # NumPy随机种子
  21. app = Flask('tf_lstm_train——service')
  22. current_dir = os.path.dirname(os.path.abspath(__file__))
  23. with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
  24. global_config = yaml.safe_load(f) # 只读的全局配置
  25. @app.before_request
  26. def update_config():
  27. # ------------ 整理参数,整合请求参数 ------------
  28. # 深拷贝全局配置 + 合并请求参数
  29. current_config = deepcopy(global_config)
  30. request_args = request.values.to_dict()
  31. # features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
  32. request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
  33. request_args['time_series'] = request_args.get('time_series', 1)
  34. current_config = deep_update(current_config, request_args)
  35. # 存储到请求上下文
  36. g.opt = argparse.Namespace(**current_config)
  37. g.dh = DataHandler(logger, current_config) # 每个请求独立实例
  38. g.ts = TSHandler(logger, current_config)
  39. @app.route('/tf_lstm_training', methods=['POST'])
  40. def model_training_lstm():
  41. # 获取程序开始时间
  42. start_time = time.time()
  43. result = {}
  44. success = 0
  45. dh = g.dh
  46. ts = g.ts
  47. args = deepcopy(g.opt.__dict__)
  48. logger.info("Program starts execution!")
  49. try:
  50. # ------------ 获取数据,预处理训练数据 ------------
  51. train_data = get_data_from_mongo(args)
  52. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'])
  53. ts.opt.cap = round(scaled_cap, 2)
  54. ts.opt.Model['input_size'] = len(dh.opt.features)
  55. # ------------ 训练模型,保存模型 ------------
  56. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  57. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  58. model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt, time_series=args['time_series'], lstm_type=1)
  59. if ts.opt.Model['add_train']:
  60. if model:
  61. feas = json.loads(ts.model_params)['features']
  62. if set(feas).issubset(set(dh.opt.features)):
  63. dh.opt.features = list(feas)
  64. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, time_series=args['time_series'])
  65. else:
  66. model = ts.get_keras_model(ts.opt, time_series=args['time_series'], lstm_type=1)
  67. logger.info("训练数据特征,不满足,加强训练模型特征")
  68. else:
  69. model = ts.get_keras_model(ts.opt, time_series=args['time_series'], lstm_type=1)
  70. ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
  71. args['Model']['features'] = ','.join(dh.opt.features)
  72. args['params'] = json.dumps(args)
  73. args['descr'] = '测试'
  74. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  75. insert_trained_model_into_mongo(ts_model, args)
  76. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  77. success = 1
  78. except Exception as e:
  79. my_exception = traceback.format_exc()
  80. my_exception.replace("\n", "\t")
  81. result['msg'] = my_exception
  82. end_time = time.time()
  83. result['success'] = success
  84. result['args'] = args
  85. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  86. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  87. print("Program execution ends!")
  88. return result
  89. if __name__ == "__main__":
  90. print("Program starts execution!")
  91. from waitress import serve
  92. serve(app, host="0.0.0.0", port=10115,
  93. threads=8, # 指定线程数(默认4,根据硬件调整)
  94. channel_timeout=600 # 连接超时时间(秒)
  95. )
  96. print("server start!")
  97. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  98. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  99. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  100. # args_dict['features'] = args_dict['features'].split(',')
  101. # args.update(args_dict)
  102. # dh = DataHandler(logger, args)
  103. # ts = TSHandler(logger, args)
  104. # opt = argparse.Namespace(**args)
  105. # opt.Model['input_size'] = len(opt.features)
  106. # train_data = get_data_from_mongo(args_dict)
  107. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  108. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  109. #
  110. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  111. # args_dict['params'] = args
  112. # args_dict['descr'] = '测试'
  113. # insert_trained_model_into_mongo(ts_model, args_dict)
  114. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)