tf_lstm_train.py 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm_train.py
  4. # @Time :2025/2/13 10:52
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, jsonify
  10. import traceback, uuid
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml, threading
  14. from models_processing.model_tf.tf_lstm import TSHandler
  15. from common.database_dml_koi import *
  16. from common.logs import Log
  17. logger = Log('tf_ts').logger
  18. np.random.seed(42) # NumPy随机种子
  19. app = Flask('tf_lstm_train——service')
  20. with app.app_context():
  21. current_dir = os.path.dirname(os.path.abspath(__file__))
  22. with open(os.path.join(current_dir, 'lstm.yaml'), 'r', encoding='utf-8') as f:
  23. args = yaml.safe_load(f)
  24. dh = DataHandler(logger, args)
  25. ts = TSHandler(logger, args)
  26. @app.before_request
  27. def update_config():
  28. # ------------ 整理参数,整合请求参数 ------------
  29. args_dict = request.values.to_dict()
  30. args_dict['features'] = args_dict['features'].split(',')
  31. args.update(args_dict)
  32. opt = argparse.Namespace(**args)
  33. dh.opt = opt
  34. ts.opt = opt
  35. logger.info(args)
  36. @app.route('/nn_lstm_training', methods=['POST'])
  37. def model_training_bp():
  38. # 获取程序开始时间
  39. start_time = time.time()
  40. result = {}
  41. success = 0
  42. print("Program starts execution!")
  43. try:
  44. # ------------ 获取数据,预处理训练数据 ------------
  45. train_data = get_data_from_mongo(args)
  46. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  47. ts.opt.cap = round(scaled_cap, 2)
  48. ts.opt.Model['input_size'] = len(dh.opt.features)
  49. # ------------ 训练模型,保存模型 ------------
  50. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  51. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  52. model = ts.train_init() if ts.opt.Model['add_train'] else ts.get_keras_model(ts.opt)
  53. if ts.opt.Model['add_train']:
  54. if model:
  55. feas = json.loads(ts.model_params)['features']
  56. if set(feas).issubset(set(dh.opt.features)):
  57. dh.opt.features = list(feas)
  58. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  59. else:
  60. model = ts.get_keras_model(ts.opt)
  61. logger.info("训练数据特征,不满足,加强训练模型特征")
  62. else:
  63. model = ts.get_keras_model(ts.opt)
  64. ts_model = ts.training(model, [train_x, train_y, valid_x, valid_y])
  65. args['Model']['features'] = ','.join(dh.opt.features)
  66. args['params'] = json.dumps(args)
  67. args['descr'] = '测试'
  68. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  69. insert_trained_model_into_mongo(ts_model, args)
  70. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  71. success = 1
  72. except Exception as e:
  73. my_exception = traceback.format_exc()
  74. my_exception.replace("\n", "\t")
  75. result['msg'] = my_exception
  76. end_time = time.time()
  77. result['success'] = success
  78. result['args'] = args
  79. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  80. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  81. print("Program execution ends!")
  82. return result
  83. if __name__ == "__main__":
  84. print("Program starts execution!")
  85. from waitress import serve
  86. serve(app, host="0.0.0.0", port=10115,
  87. threads=8, # 指定线程数(默认4,根据硬件调整)
  88. channel_timeout=600 # 连接超时时间(秒)
  89. )
  90. print("server start!")
  91. # args_dict = {"mongodb_database": 'realtimeDq', 'scaler_table': 'j00600_scaler', 'model_name': 'lstm1',
  92. # 'model_table': 'j00600_model', 'mongodb_read_table': 'j00600', 'col_time': 'dateTime',
  93. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  94. # args_dict['features'] = args_dict['features'].split(',')
  95. # args.update(args_dict)
  96. # dh = DataHandler(logger, args)
  97. # ts = TSHandler(logger, args)
  98. # opt = argparse.Namespace(**args)
  99. # opt.Model['input_size'] = len(opt.features)
  100. # train_data = get_data_from_mongo(args_dict)
  101. # train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data)
  102. # ts_model = ts.training([train_x, train_y, valid_x, valid_y])
  103. #
  104. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  105. # args_dict['params'] = args
  106. # args_dict['descr'] = '测试'
  107. # insert_trained_model_into_mongo(ts_model, args_dict)
  108. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)