tf_cnn_train.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2024/5/6 13:25
  4. # file: time_series.py
  5. # author: David
  6. # company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_tf.tf_cnn import CNNHandler
  15. from common.database_dml_koi import *
  16. import matplotlib.pyplot as plt
  17. from common.logs import Log
  18. # logger = logging.getLogger()
  19. logger = Log('tf_cnn').logger
  20. np.random.seed(42) # NumPy随机种子
  21. app = Flask('tf_cnn_train——service')
  22. with app.app_context():
  23. current_dir = os.path.dirname(os.path.abspath(__file__))
  24. with open(os.path.join(current_dir, 'cnn.yaml'), 'r', encoding='utf-8') as f:
  25. args = yaml.safe_load(f)
  26. dh = DataHandler(logger, args)
  27. cnn = CNNHandler(logger, args)
  28. @app.before_request
  29. def update_config():
  30. # ------------ 整理参数,整合请求参数 ------------
  31. args_dict = request.values.to_dict()
  32. args_dict['features'] = args_dict['features'].split(',')
  33. args.update(args_dict)
  34. opt = argparse.Namespace(**args)
  35. dh.opt = opt
  36. cnn.opt = opt
  37. logger.info(args)
  38. @app.route('/nn_cnn_training', methods=['POST'])
  39. def model_training_bp():
  40. # 获取程序开始时间
  41. start_time = time.time()
  42. result = {}
  43. success = 0
  44. print("Program starts execution!")
  45. try:
  46. # ------------ 获取数据,预处理训练数据 ------------
  47. train_data = get_data_from_mongo(args)
  48. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  49. cnn.opt.Model['input_size'] = len(dh.opt.features)
  50. cnn.opt.cap = round(scaled_cap, 2)
  51. # ------------ 训练模型,保存模型 ------------
  52. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  53. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  54. logger.info("---------cap归一化:{}".format(cnn.opt.cap))
  55. model = cnn.train_init() if cnn.opt.Model['add_train'] else cnn.get_keras_model(cnn.opt)
  56. if cnn.opt.Model['add_train']:
  57. if model:
  58. feas = json.loads(cnn.model_params)['features']
  59. if set(feas).issubset(set(dh.opt.features)):
  60. dh.opt.features = list(feas)
  61. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data)
  62. else:
  63. model = cnn.get_keras_model(cnn.opt)
  64. logger.info("训练数据特征,不满足,加强训练模型特征")
  65. else:
  66. model = cnn.get_keras_model(cnn.opt)
  67. bp_model = cnn.training(model, [train_x, train_y, valid_x, valid_y])
  68. args['Model']['features'] = ','.join(dh.opt.features)
  69. args['params'] = json.dumps(args)
  70. args['descr'] = '测试'
  71. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  72. insert_trained_model_into_mongo(bp_model, args)
  73. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  74. success = 1
  75. except Exception as e:
  76. my_exception = traceback.format_exc()
  77. my_exception.replace("\n", "\t")
  78. result['msg'] = my_exception
  79. end_time = time.time()
  80. result['success'] = success
  81. result['args'] = args
  82. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  83. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  84. print("Program execution ends!")
  85. return result
  86. if __name__ == "__main__":
  87. print("Program starts execution!")
  88. from waitress import serve
  89. serve(app, host="0.0.0.0", port=10113,
  90. threads=8, # 指定线程数(默认4,根据硬件调整)
  91. channel_timeout=600 # 连接超时时间(秒)
  92. )
  93. # print("server start!")
  94. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  95. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  96. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  97. # args_dict['features'] = args_dict['features'].split(',')
  98. # arguments.update(args_dict)
  99. # dh = DataHandler(logger, arguments)
  100. # cnn = CNNHandler(logger)
  101. # opt = argparse.Namespace(**arguments)
  102. # opt.Model['input_size'] = len(opt.features)
  103. # train_data = get_data_from_mongo(args_dict)
  104. # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
  105. # cnn_model = cnn.training(opt, [train_x, train_y, valid_x, valid_y])
  106. #
  107. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  108. # args_dict['params'] = arguments
  109. # args_dict['descr'] = '测试'
  110. # insert_trained_model_into_mongo(cnn_model, args_dict)
  111. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)