tf_bp_pre.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :nn_bp_pre.py
  4. # @Time :2025/2/12 10:39
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import logging, argparse, traceback
  11. from common.database_dml import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml
  16. model_lock = Lock()
  17. from itertools import chain
  18. from common.logs import Log
  19. from tf_bp import BPHandler
  20. # logger = Log('tf_bp').logger()
  21. logger = Log('tf_bp').logger
  22. np.random.seed(42) # NumPy随机种子
  23. # tf.set_random_seed(42) # TensorFlow随机种子
  24. app = Flask('tf_bp_pre——service')
  25. with app.app_context():
  26. with open('../model_koi/bp.yaml', 'r', encoding='utf-8') as f:
  27. arguments = yaml.safe_load(f)
  28. dh = DataHandler(logger, arguments)
  29. bp = BPHandler(logger)
  30. @app.route('/nn_bp_predict', methods=['POST'])
  31. def model_prediction_bp():
  32. # 获取程序开始时间
  33. start_time = time.time()
  34. result = {}
  35. success = 0
  36. bp = BPHandler(logger)
  37. print("Program starts execution!")
  38. params_dict = request.values.to_dict()
  39. args = arguments.deepcopy()
  40. args.update(params_dict)
  41. try:
  42. print('args', args)
  43. logger.info(args)
  44. predict_data = get_data_from_mongo(args)
  45. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  46. scaled_pre_x = dh.pre_data_handler(predict_data, feature_scaler, args)
  47. bp.get_model(args)
  48. # result = bp.predict(scaled_pre_x, args)
  49. result = list(chain.from_iterable(target_scaler.inverse_transform([bp.predict(scaled_pre_x).flatten()])))
  50. insert_data_into_mongo(result, args)
  51. success = 1
  52. except Exception as e:
  53. my_exception = traceback.format_exc()
  54. my_exception.replace("\n", "\t")
  55. result['msg'] = my_exception
  56. end_time = time.time()
  57. result['success'] = success
  58. result['args'] = args
  59. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  60. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  61. print("Program execution ends!")
  62. return result
  63. if __name__ == "__main__":
  64. run_code = 0