123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265 |
- from pymongo import MongoClient, UpdateOne
- import pandas as pd
- from scripts.regsetup import description
- from sqlalchemy import create_engine
- import pickle
- from io import BytesIO
- import joblib
- import h5py
- import tensorflow as tf
- def get_data_from_mongo(args):
- mongodb_connection = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/"
- mongodb_database = args['mongodb_database']
- mongodb_read_table = args['mongodb_read_table']
- query_dict = {}
- if 'timeBegin' in args.keys():
- timeBegin = args['timeBegin']
- query_dict.update({"$gte": timeBegin})
- if 'timeEnd' in args.keys():
- timeEnd = args['timeEnd']
- query_dict.update({"$lte": timeEnd})
- client = MongoClient(mongodb_connection)
- # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
- db = client[mongodb_database]
- collection = db[mongodb_read_table] # 集合名称
- if len(query_dict) != 0:
- query = {"dateTime": query_dict}
- cursor = collection.find(query)
- else:
- cursor = collection.find()
- data = list(cursor)
- df = pd.DataFrame(data)
- # 4. 删除 _id 字段(可选)
- if '_id' in df.columns:
- df = df.drop(columns=['_id'])
- client.close()
- return df
- def get_df_list_from_mongo(args):
- mongodb_connection,mongodb_database,mongodb_read_table = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['mongodb_read_table'].split(',')
- df_list = []
- client = MongoClient(mongodb_connection)
- # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
- db = client[mongodb_database]
- for table in mongodb_read_table:
- collection = db[table] # 集合名称
- data_from_db = collection.find() # 这会返回一个游标(cursor)
- # 将游标转换为列表,并创建 pandas DataFrame
- df = pd.DataFrame(list(data_from_db))
- if '_id' in df.columns:
- df = df.drop(columns=['_id'])
- df_list.append(df)
- client.close()
- return df_list
- def insert_data_into_mongo(res_df, args):
- """
- 插入数据到 MongoDB 集合中,可以选择覆盖、追加或按指定的 key 进行更新插入。
- 参数:
- - res_df: 要插入的 DataFrame 数据
- - args: 包含 MongoDB 数据库和集合名称的字典
- - overwrite: 布尔值,True 表示覆盖,False 表示追加
- - update_keys: 列表,指定用于匹配的 key 列,如果存在则更新,否则插入 'col1','col2'
- """
- mongodb_connection = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/"
- mongodb_database = args['mongodb_database']
- mongodb_write_table = args['mongodb_write_table']
- overwrite = 1
- update_keys = None
- if 'overwrite' in args.keys():
- overwrite = int(args['overwrite'])
- if 'update_keys' in args.keys():
- update_keys = args['update_keys'].split(',')
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- collection = db[mongodb_write_table]
- # 覆盖模式:删除现有集合
- if overwrite:
- if mongodb_write_table in db.list_collection_names():
- collection.drop()
- print(f"Collection '{mongodb_write_table}' already exists, deleted successfully!")
- # 将 DataFrame 转为字典格式
- data_dict = res_df.to_dict("records") # 每一行作为一个字典
- # 如果没有数据,直接返回
- if not data_dict:
- print("No data to insert.")
- return
- # 如果指定了 update_keys,则执行 upsert(更新或插入)
- if update_keys and not overwrite:
- operations = []
- for record in data_dict:
- # 构建查询条件,用于匹配要更新的文档
- query = {key: record[key] for key in update_keys}
- operations.append(UpdateOne(query, {'$set': record}, upsert=True))
- # 批量执行更新/插入操作
- if operations:
- result = collection.bulk_write(operations)
- print(f"Matched: {result.matched_count}, Upserts: {result.upserted_count}")
- else:
- # 追加模式:直接插入新数据
- collection.insert_many(data_dict)
- print("Data inserted successfully!")
- def get_data_fromMysql(params):
- mysql_conn = params['mysql_conn']
- query_sql = params['query_sql']
- #数据库读取实测气象
- engine = create_engine(f"mysql+pymysql://{mysql_conn}")
- # 定义SQL查询
- env_df = pd.read_sql_query(query_sql, engine)
- return env_df
- def insert_pickle_model_into_mongo(model, args):
- mongodb_connection, mongodb_database, mongodb_write_table, model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/", \
- args['mongodb_database'], args['mongodb_write_table'], args['model_name']
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- # 序列化模型
- model_bytes = pickle.dumps(model)
- model_data = {
- 'model_name': model_name,
- 'model': model_bytes, # 将模型字节流存入数据库
- }
- print('Training completed!')
- if mongodb_write_table in db.list_collection_names():
- db[mongodb_write_table].drop()
- print(f"Collection '{mongodb_write_table} already exist, deleted successfully!")
- collection = db[mongodb_write_table] # 集合名称
- collection.insert_one(model_data)
- print("model inserted successfully!")
- def insert_h5_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args):
- mongodb_connection,mongodb_database,scaler_table,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
- args['mongodb_database'],args['scaler_table'],args['model_table'],args['model_name'])
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- if scaler_table in db.list_collection_names():
- db[scaler_table].drop()
- print(f"Collection '{scaler_table} already exist, deleted successfully!")
- collection = db[scaler_table] # 集合名称
- # Save the scalers in MongoDB as binary data
- collection.insert_one({
- "feature_scaler": feature_scaler_bytes.read(),
- "target_scaler": target_scaler_bytes.read()
- })
- print("scaler_model inserted successfully!")
- if model_table in db.list_collection_names():
- db[model_table].drop()
- print(f"Collection '{model_table} already exist, deleted successfully!")
- model_table = db[model_table]
- # 创建 BytesIO 缓冲区
- model_buffer = BytesIO()
- # 将模型保存为 HDF5 格式到内存 (BytesIO)
- model.save(model_buffer, save_format='h5')
- # 将指针移到缓冲区的起始位置
- model_buffer.seek(0)
- # 获取模型的二进制数据
- model_data = model_buffer.read()
- # 将模型保存到 MongoDB
- model_table.insert_one({
- "model_name": model_name,
- "model_data": model_data
- })
- print("模型成功保存到 MongoDB!")
- def insert_trained_model_into_mongo(model ,args):
- mongodb_connection,mongodb_database,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
- args['mongodb_database'],args['model_table'],args['model_name'])
- gen_time, params_json, descr = args['gen_time'], args['params'], args['descr']
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- if model_table in db.list_collection_names():
- db[model_table].drop()
- print(f"Collection '{model_table} already exist, deleted successfully!")
- model_table = db[model_table]
- # 创建 BytesIO 缓冲区
- model_buffer = BytesIO()
- # 将模型保存为 HDF5 格式到内存 (BytesIO)
- model.save(model_buffer, save_format='h5')
- # 将指针移到缓冲区的起始位置
- model_buffer.seek(0)
- # 获取模型的二进制数据
- model_data = model_buffer.read()
- # 将模型保存到 MongoDB
- model_table.insert_one({
- "model_name": model_name,
- "model_data": model_data,
- "gen_time": gen_time,
- "params": params_json,
- "descr": descr
- })
- print("模型成功保存到 MongoDB!")
- def insert_scaler_model_into_mongo(feature_scaler_bytes, args):
- mongodb_connection,mongodb_database,scaler_table,model_table,model_name = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
- args['mongodb_database'],args['scaler_table'],args['model_table'],args['model_name'])
- client = MongoClient(mongodb_connection)
- db = client[mongodb_database]
- if scaler_table in db.list_collection_names():
- db[scaler_table].drop()
- print(f"Collection '{scaler_table} already exist, deleted successfully!")
- collection = db[scaler_table] # 集合名称
- # Save the scalers in MongoDB as binary data
- collection.insert_one({
- "feature_scaler": feature_scaler_bytes.read(),
- })
- print("scaler_model inserted successfully!")
- def get_h5_model_from_mongo(args):
- mongodb_connection,mongodb_database,model_table,model_name = "mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",args['mongodb_database'],args['model_table'],args['model_name']
- client = MongoClient(mongodb_connection)
- # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
- db = client[mongodb_database]
- collection = db[model_table] # 集合名称
- # 查询 MongoDB 获取模型数据
- model_doc = collection.find_one({"model_name": model_name})
- if model_doc:
- model_data = model_doc['model_data'] # 获取模型的二进制数据
- # 将二进制数据加载到 BytesIO 缓冲区
- model_buffer = BytesIO(model_data)
- # 从缓冲区加载模型
- # 使用 h5py 和 BytesIO 从内存中加载模型
- with h5py.File(model_buffer, 'r') as f:
- model = tf.keras.models.load_model(f)
- print(f"{model_name}模型成功从 MongoDB 加载!")
- client.close()
- return model
- else:
- print(f"未找到model_name为 {model_name} 的模型。")
- client.close()
- return None
- def get_scaler_model_from_mongo(args):
- mongodb_connection, mongodb_database, scaler_table, = ("mongodb://root:sdhjfREWFWEF23e@192.168.1.43:30000/",
- args['mongodb_database'], args['scaler_table'])
- client = MongoClient(mongodb_connection)
- # 选择数据库(如果数据库不存在,MongoDB 会自动创建)
- db = client[mongodb_database]
- collection = db[scaler_table] # 集合名称
- # Retrieve the scalers from MongoDB
- scaler_doc = collection.find_one()
- # Deserialize the scalers
- feature_scaler_bytes = BytesIO(scaler_doc["feature_scaler"])
- feature_scaler = joblib.load(feature_scaler_bytes)
- target_scaler_bytes = BytesIO(scaler_doc["target_scaler"])
- target_scaler = joblib.load(target_scaler_bytes)
- return feature_scaler,target_scaler
|