tf_tcn.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_lstm.py
  4. # @Time :2025/2/12 14:03
  5. # @Author :David
  6. # @Company: shenyang JY
  7. from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten, LayerNormalization, Dropout
  8. from tensorflow.keras.models import Model, load_model
  9. from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
  10. from tensorflow.keras import optimizers, regularizers
  11. from models_processing.model_tf.losses import region_loss
  12. import numpy as np
  13. from common.database_dml_koi import *
  14. from models_processing.model_tf.settings import set_deterministic
  15. from threading import Lock
  16. import argparse
  17. model_lock = Lock()
  18. set_deterministic(42)
  19. class TCNHandler(object):
  20. def __init__(self, logger, args):
  21. self.logger = logger
  22. self.opt = argparse.Namespace(**args)
  23. self.model = None
  24. self.model_params = None
  25. def get_model(self, args):
  26. """
  27. 单例模式+线程锁,防止在异步加载时引发线程安全
  28. """
  29. try:
  30. with model_lock:
  31. loss = region_loss(self.opt)
  32. self.model, self.model_params = get_keras_model_from_mongo(args, {type(loss).__name__: loss})
  33. except Exception as e:
  34. self.logger.info("加载模型权重失败:{}".format(e.args))
  35. @staticmethod
  36. def get_keras_model(opt, time_series=1):
  37. # 参数设置
  38. loss = region_loss(opt)
  39. time_steps = opt.Model['time_step']*time_series # 输入时间步长 (16*3)
  40. output_steps = opt.Model['time_step'] # 输出时间步长
  41. hidden_size = opt.Model.get('hidden_size', 64)
  42. l2_reg = regularizers.l2(opt.Model['lambda_value_2'])
  43. dropout_rate = opt.Model.get('dropout_rate', 0.2)
  44. # 输入层
  45. nwp_input = Input(shape=(time_steps, opt.Model['input_size']), name='nwp')
  46. # 初始卷积层 (将通道数扩展到hidden_size)
  47. x = Conv1D(filters=hidden_size, kernel_size=3, strides=1, padding='causal', activation='relu', kernel_regularizer=l2_reg)(nwp_input)
  48. # 时序卷积块 (TCN块)
  49. for d in [1, 2, 4, 8]: # 扩张系数
  50. # 扩张因果卷积
  51. conv = Conv1D(filters=hidden_size, kernel_size=3, strides=1,
  52. padding='causal', activation='relu',
  53. dilation_rate=d,
  54. kernel_regularizer=l2_reg)
  55. x = conv(x)
  56. # 残差连接
  57. skip = Conv1D(filters=hidden_size, kernel_size=1, padding='same')(x)
  58. # 层归一化
  59. x = LayerNormalization()(x)
  60. x = tf.keras.activations.relu(x)
  61. x = Dropout(dropout_rate)(x)
  62. x = x + skip # 残差连接
  63. # 提取中间16个时间步的表示
  64. # 这里我们使用全局平均池化或直接切片
  65. # 方法1: 使用全局平均池化然后上采样
  66. # x = tf.reduce_mean(x, axis=1, keepdims=True)
  67. # x = tf.tile(x, [1, output_steps, 1])
  68. # 方法2: 直接切片中间16个时间步 (更符合你的需求)
  69. # 由于是因果卷积,中间时间步大致对应输入的中间部分
  70. start_idx = (time_steps - output_steps) // 2
  71. x = x[:, start_idx:start_idx + output_steps, :]
  72. # 输出层
  73. output = Dense(output_steps, activation=None, name='cdq_output')(x)
  74. # 创建模型
  75. model = Model(nwp_input, output)
  76. # 优化器
  77. adam = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  78. model.compile(loss=loss, optimizer=adam)
  79. return model
  80. def train_init(self):
  81. try:
  82. # 进行加强训练,支持修模
  83. loss = region_loss(self.opt)
  84. base_train_model, self.model_params = get_keras_model_from_mongo(vars(self.opt), {type(loss).__name__: loss})
  85. base_train_model.summary()
  86. self.logger.info("已加载加强训练基础模型")
  87. return base_train_model
  88. except Exception as e:
  89. self.logger.info("加载加强训练模型权重失败:{}".format(e.args))
  90. return False
  91. def training(self, model, train_and_valid_data):
  92. model.summary()
  93. train_x, train_y, valid_x, valid_y = train_and_valid_data
  94. early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
  95. history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'],
  96. verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
  97. loss = np.round(history.history['loss'], decimals=5)
  98. val_loss = np.round(history.history['val_loss'], decimals=5)
  99. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  100. self.logger.info("训练集损失函数为:{}".format(loss))
  101. self.logger.info("验证集损失函数为:{}".format(val_loss))
  102. return model
  103. def predict(self, test_x, batch_size=1):
  104. result = self.model.predict(test_x, batch_size=batch_size)
  105. self.logger.info("执行预测方法")
  106. return result
  107. if __name__ == "__main__":
  108. run_code = 0