12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- import pandas as pd
- from pymongo import MongoClient
- import pickle
- from flask import Flask, request
- import time
- import logging
- import traceback
- from common.database_dml import get_data_from_mongo, insert_data_into_mongo
- app = Flask('res_prediction——service')
- def str_to_list(arg):
- if arg == '':
- return []
- else:
- return arg.split(',')
- @app.route('/res_prediction', methods=['POST'])
- def model_prediction_lightgbm():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- try:
- args = request.values.to_dict()
- print('args', args)
- logger.info(args)
- col_reserve = str_to_list(args['col_reserve'])
- power_df = get_data_from_mongo(args)
- if 'is_limit' in power_df.columns:
- power_df = power_df[power_df['is_limit'] == False]
- power_df['model'] = args['model']
- power_df['predict'] = power_df[args['col_pre']]
- features_reserve = col_reserve + ['model', 'predict']
- insert_data_into_mongo(power_df[set(features_reserve)], args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("res_prediction log")
- from waitress import serve
- serve(app, host="0.0.0.0", port=10105)
- print("server start!")
|