tf_cnn_train.py 4.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2024/5/6 13:25
  4. # file: time_series.py
  5. # author: David
  6. # company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_koi.tf_cnn import CNNHandler
  15. from common.database_dml import *
  16. import matplotlib.pyplot as plt
  17. from common.logs import Log
  18. logger = logging.getLogger()
  19. # logger = Log('models-processing').logger
  20. np.random.seed(42) # NumPy随机种子
  21. # tf.set_random_seed(42) # TensorFlow随机种子
  22. app = Flask('tf_cnn_train——service')
  23. with app.app_context():
  24. with open('../model_koi/cnn.yaml', 'r', encoding='utf-8') as f:
  25. args = yaml.safe_load(f)
  26. dh = DataHandler(logger, args)
  27. cnn = CNNHandler(logger)
  28. @app.route('/nn_cnn_training', methods=['POST'])
  29. def model_training_bp():
  30. # 获取程序开始时间
  31. start_time = time.time()
  32. result = {}
  33. success = 0
  34. print("Program starts execution!")
  35. args_dict = request.values.to_dict()
  36. args_dict['features'] = args_dict['features'].split(',')
  37. args.update(args_dict)
  38. opt = argparse.Namespace(**args)
  39. logger.info(args_dict)
  40. try:
  41. # ------------ 获取数据,预处理训练数据 ------------
  42. train_data = get_data_from_mongo(args_dict)
  43. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
  44. # ------------ 训练模型,保存模型 ------------
  45. opt.Model['input_size'] = train_x.shape[2]
  46. bp_model = cnn.training(opt, [train_x, valid_x, train_y, valid_y])
  47. args['params'] = json.dumps(args)
  48. args['descr'] = '测试'
  49. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  50. insert_trained_model_into_mongo(bp_model, args)
  51. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  52. success = 1
  53. except Exception as e:
  54. # my_exception = traceback.format_exc()
  55. # my_exception.replace("\n", "\t")
  56. # result['msg'] = my_exception
  57. print("???", e)
  58. end_time = time.time()
  59. result['success'] = success
  60. result['args'] = args
  61. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  62. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  63. print("Program execution ends!")
  64. return result
  65. if __name__ == "__main__":
  66. print("Program starts execution!")
  67. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  68. logger = logging.getLogger("model_training_bp log")
  69. from waitress import serve
  70. serve(app, host="0.0.0.0", port=10103, threads=4)
  71. # print("server start!")
  72. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  73. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  74. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  75. # args_dict['features'] = args_dict['features'].split(',')
  76. # arguments.update(args_dict)
  77. # dh = DataHandler(logger, arguments)
  78. # cnn = CNNHandler(logger)
  79. # opt = argparse.Namespace(**arguments)
  80. # opt.Model['input_size'] = len(opt.features)
  81. # train_data = get_data_from_mongo(args_dict)
  82. # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
  83. # cnn_model = cnn.training(opt, [train_x, train_y, valid_x, valid_y])
  84. #
  85. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  86. # args_dict['params'] = arguments
  87. # args_dict['descr'] = '测试'
  88. # insert_trained_model_into_mongo(cnn_model, args_dict)
  89. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)