model_prediction_lstm.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. from flask import Flask,request
  2. import time
  3. import logging
  4. import traceback
  5. import numpy as np
  6. from itertools import chain
  7. from common.database_dml import get_data_from_mongo,insert_data_into_mongo,get_h5_model_from_mongo,get_scaler_model_from_mongo
  8. from common.processing_data_common import str_to_list
  9. app = Flask('model_prediction_lstm——service')
  10. # 创建时间序列数据
  11. def create_sequences(data_features,data_target,time_steps):
  12. X, y = [], []
  13. if len(data_features)<time_steps:
  14. print("数据长度不能比时间步长小!")
  15. return np.array(X), np.array(y)
  16. else:
  17. for i in range(len(data_features) - time_steps+1):
  18. X.append(data_features[i:(i + time_steps)])
  19. if len(data_target)>0:
  20. y.append(data_target[i + time_steps -1])
  21. return np.array(X), np.array(y)
  22. def model_prediction(df,args):
  23. features, time_steps, col_time, model_name,col_reserve = str_to_list(args['features']), int(args['time_steps']),args['col_time'],args['model_name'],str_to_list(args['col_reserve'])
  24. feature_scaler,target_scaler = get_scaler_model_from_mongo(args)
  25. df = df.sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
  26. scaled_features = feature_scaler.transform(df[features])
  27. X_predict, _ = create_sequences(scaled_features, [], time_steps)
  28. # 加载模型时传入自定义损失函数
  29. # model = load_model(f'{farmId}_model.h5', custom_objects={'rmse': rmse})
  30. model = get_h5_model_from_mongo(args)
  31. y_predict = list(chain.from_iterable(target_scaler.inverse_transform([model.predict(X_predict).flatten()])))
  32. result = df[-len(y_predict):]
  33. result['predict'] = y_predict
  34. result.loc[result['predict'] < 0, 'predict'] = 0
  35. result['model'] = model_name
  36. features_reserve = col_reserve + ['model', 'predict']
  37. return result[set(features_reserve)]
  38. @app.route('/model_prediction_lstm', methods=['POST'])
  39. def model_prediction_lstm():
  40. # 获取程序开始时间
  41. start_time = time.time()
  42. result = {}
  43. success = 0
  44. print("Program starts execution!")
  45. try:
  46. args = request.values.to_dict()
  47. print('args',args)
  48. logger.info(args)
  49. power_df = get_data_from_mongo(args)
  50. model = model_prediction(power_df,args)
  51. insert_data_into_mongo(model,args)
  52. success = 1
  53. except Exception as e:
  54. my_exception = traceback.format_exc()
  55. my_exception.replace("\n","\t")
  56. result['msg'] = my_exception
  57. end_time = time.time()
  58. result['success'] = success
  59. result['args'] = args
  60. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  61. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  62. print("Program execution ends!")
  63. return result
  64. if __name__=="__main__":
  65. print("Program starts execution!")
  66. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  67. logger = logging.getLogger("model_prediction_lstm log")
  68. from waitress import serve
  69. serve(app, host="0.0.0.0", port=10097)
  70. print("server start!")