12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2024/5/6 13:52
- # file: data_process.py
- # author: David
- # company: shenyang JY
- import os
- import numpy as np
- import pandas as pd
- from cache.data_cleaning import rm_duplicated
- np.random.seed(42)
- class DataProcess(object):
- def __init__(self, log, args):
- self.logger = log
- self.args = args
- self.opt = self.args.parse_args_and_yaml()
- # 主要是联立后的补值操作
- def get_train_data(self, unite, envir):
- # unite = pd.merge(unite, envir, on='C_TIME')
- unite['C_TIME'] = pd.to_datetime(unite['C_TIME'])
- unite['time_diff'] = unite['C_TIME'].diff()
- dt_short = pd.Timedelta(minutes=15)
- dt_long = pd.Timedelta(minutes=15 * self.opt.Model['how_long_fill'])
- data_train = self.missing_time_splite(unite, dt_short, dt_long)
- miss_points = unite[(unite['time_diff'] > dt_short) & (unite['time_diff'] < dt_long)]
- miss_number = miss_points['time_diff'].dt.total_seconds().sum(axis=0)/(15*60) - len(miss_points)
- self.logger.info("再次测算,需要插值的总点数为:{}".format(miss_number))
- if miss_number > 0 and self.opt.Model["train_data_fill"]:
- data_train = self.data_fill(data_train)
- return data_train, envir
- def get_predict_data(self, nwp, dq):
- if self.opt.Model["predict_data_fill"] and len(dq) > len(nwp):
- self.logger.info("接口nwp和dq合并清洗后,需要插值的总点数为:{}".format(len(dq)-len(nwp)))
- nwp.set_index('C_TIME', inplace=True)
- dq.set_index('C_TIME', inplace=True)
- nwp = nwp.resample('15T').interpolate(method='linear') # nwp先进行线性填充
- nwp = nwp.reindex(dq.index, method='bfill') # 再对超过采样边缘无法填充的点进行二次填充
- nwp = nwp.reindex(dq.index, method='ffill')
- nwp.reset_index(drop=False, inplace=True)
- dq.reset_index(drop=False, inplace=True)
- return nwp
- def get_test_data(self, unite, envir):
- # 第二步:计算间隔
- unite['C_TIME'] = pd.to_datetime(unite['C_TIME'])
- unite['time_diff'] = unite['C_TIME'].diff()
- dt_short = pd.Timedelta(minutes=15)
- dt_long = pd.Timedelta(minutes=15 * self.opt.Model['how_long_fill'])
- data_test = self.missing_time_splite(unite, dt_short, dt_long)
- miss_points = unite[(unite['time_diff'] > dt_short) & (unite['time_diff'] < dt_long)]
- miss_number = miss_points['time_diff'].dt.total_seconds().sum(axis=0) / (15 * 60) - len(miss_points)
- self.logger.info("再次测算,需要插值的总点数为:{}".format(miss_number))
- if self.opt.Model["test_data_fill"] and miss_number > 0:
- data_test = self.data_fill(data_test, test=True)
- return data_test, envir
- def missing_time_splite(self, df, dt_short, dt_long):
- n_long, n_short, n_points = 0, 0, 0
- start_index = 0
- dfs = []
- for i in range(1, len(df)):
- if df['time_diff'][i] >= dt_long:
- df_long = df.iloc[start_index:i, :-1]
- dfs.append(df_long)
- start_index = i
- n_long += 1
- if df['time_diff'][i] > dt_short:
- self.logger.info(f"{df['C_TIME'][i-1]} ~ {df['C_TIME'][i]}")
- points = df['time_diff'].dt.total_seconds()[i]/(60*15)-1
- self.logger.info("缺失点数:{}".format(points))
- if df['time_diff'][i] < dt_long:
- n_short += 1
- n_points += points
- self.logger.info("需要补值的点数:{}".format(points))
- dfs.append(df.iloc[start_index:, :-1])
- self.logger.info(f"数据总数:{len(df)}, 时序缺失的间隔:{n_short}, 其中,较长的时间间隔:{n_long}")
- self.logger.info("需要补值的总点数:{}".format(n_points))
- return dfs
- def data_fill(self, dfs, test=False):
- dfs_fill, inserts = [], 0
- for i, df in enumerate(dfs):
- df = rm_duplicated(df, self.logger)
- df1 = df.set_index('C_TIME', inplace=False)
- dff = df1.resample('15T').interpolate(method='linear') # 采用线性补值,其他补值方法需要进一步对比
- dff.reset_index(inplace=True)
- points = len(dff) - len(df1)
- dfs_fill.append(dff)
- self.logger.info("{} ~ {} 有 {} 个点, 填补 {} 个点.".format(dff.iloc[0, 0], dff.iloc[-1, 0], len(dff), points))
- inserts += points
- name = "预测数据" if test is True else "训练集"
- self.logger.info("{}分成了{}段,实际一共补值{}点".format(name, len(dfs_fill), inserts))
- return dfs_fill
|