model_training_lstm.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. import numpy as np
  2. from sklearn.model_selection import train_test_split
  3. from flask import Flask,request
  4. import time
  5. import traceback
  6. import logging
  7. from sklearn.preprocessing import MinMaxScaler
  8. from io import BytesIO
  9. import joblib
  10. from tensorflow.keras.models import Sequential
  11. from tensorflow.keras.layers import LSTM, Dense, Dropout
  12. from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
  13. import tensorflow as tf
  14. from common.database_dml import get_data_from_mongo,insert_h5_model_into_mongo
  15. from common.processing_data_common import missing_features,str_to_list
  16. import time
  17. import random
  18. import matplotlib.pyplot as plt
  19. app = Flask('model_training_lightgbm——service')
  20. def rmse(y_true, y_pred):
  21. return tf.math.sqrt(tf.reduce_mean(tf.square(y_true - y_pred)))
  22. def draw_loss(history):
  23. #绘制训练集和验证集损失
  24. plt.figure(figsize=(20, 8))
  25. plt.plot(history.history['loss'], label='Training Loss')
  26. plt.plot(history.history['val_loss'], label='Validation Loss')
  27. plt.title('Loss Curve')
  28. plt.xlabel('Epochs')
  29. plt.ylabel('Loss')
  30. plt.legend()
  31. plt.show()
  32. # 创建时间序列数据
  33. def create_sequences(data_features,data_target,time_steps):
  34. X, y = [], []
  35. if len(data_features)<time_steps:
  36. print("数据长度不能比时间步长小!")
  37. return np.array(X), np.array(y)
  38. else:
  39. for i in range(len(data_features) - time_steps+1):
  40. X.append(data_features[i:(i + time_steps)])
  41. if len(data_target)>0:
  42. y.append(data_target[i + time_steps -1])
  43. return np.array(X), np.array(y)
  44. def build_model(data, args):
  45. sleep_time = random.uniform(1, 20) # 生成 5 到 20 之间的随机浮动秒数
  46. time.sleep(sleep_time)
  47. tf.keras.backend.clear_session() # 清除当前的图和会话
  48. col_time, time_steps,features,target = args['col_time'], int(args['time_steps']), str_to_list(args['features']),args['target']
  49. if 'is_limit' in data.columns:
  50. data = data[data['is_limit']==False]
  51. # 清洗特征平均缺失率大于20%的天
  52. data = missing_features(data, features, col_time)
  53. train_data = data.sort_values(by=col_time).fillna(method='ffill').fillna(method='bfill')
  54. # X_train, X_test, y_train, y_test = process_data(df_clean, params)
  55. # 创建特征和目标的标准化器
  56. feature_scaler = MinMaxScaler(feature_range=(0, 1))
  57. target_scaler = MinMaxScaler(feature_range=(0, 1))
  58. # 标准化特征和目标
  59. scaled_features = feature_scaler.fit_transform(train_data[features])
  60. scaled_target = target_scaler.fit_transform(train_data[[target]])
  61. # 保存两个scaler
  62. feature_scaler_bytes = BytesIO()
  63. joblib.dump(feature_scaler, feature_scaler_bytes)
  64. feature_scaler_bytes.seek(0) # Reset pointer to the beginning of the byte stream
  65. target_scaler_bytes = BytesIO()
  66. joblib.dump(target_scaler, target_scaler_bytes)
  67. target_scaler_bytes.seek(0)
  68. X, y = create_sequences(scaled_features, scaled_target, time_steps)
  69. # 划分训练集和测试集
  70. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=43)
  71. # 构建 LSTM 模型
  72. model = Sequential()
  73. model.add(LSTM(units=64, return_sequences=False, input_shape=(time_steps, X_train.shape[2])))
  74. model.add(Dense(1)) # 输出单一值
  75. # 编译模型
  76. model.compile(optimizer='adam', loss='mean_squared_error')
  77. # 定义 EarlyStopping 和 ReduceLROnPlateau 回调
  78. early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True, verbose=1)
  79. reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1)
  80. # 训练模型
  81. # 使用GPU进行训练
  82. with tf.device('/GPU:1'):
  83. history = model.fit(X_train, y_train,
  84. epochs=100,
  85. batch_size=32,
  86. validation_data=(X_test, y_test),
  87. verbose=2,
  88. shuffle=False,
  89. callbacks=[early_stopping, reduce_lr])
  90. # draw_loss(history)
  91. return model,feature_scaler_bytes,target_scaler_bytes
  92. @app.route('/model_training_lstm', methods=['POST'])
  93. def model_training_lstm():
  94. # 获取程序开始时间
  95. start_time = time.time()
  96. result = {}
  97. success = 0
  98. print("Program starts execution!")
  99. try:
  100. args = request.values.to_dict()
  101. print('args',args)
  102. logger.info(args)
  103. power_df = get_data_from_mongo(args)
  104. model,feature_scaler_bytes,target_scaler_bytes = build_model(power_df,args)
  105. insert_h5_model_into_mongo(model,feature_scaler_bytes,target_scaler_bytes ,args)
  106. success = 1
  107. except Exception as e:
  108. my_exception = traceback.format_exc()
  109. my_exception.replace("\n","\t")
  110. result['msg'] = my_exception
  111. end_time = time.time()
  112. result['success'] = success
  113. result['args'] = args
  114. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  115. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  116. print("Program execution ends!")
  117. return result
  118. if __name__=="__main__":
  119. print("Program starts execution!")
  120. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  121. logger = logging.getLogger("model_training_lightgbm log")
  122. from waitress import serve
  123. serve(app, host="0.0.0.0", port=10096,threads=4)
  124. print("server start!")