123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- #!/usr/bin/env python
- # -*- coding:utf-8 -*-
- # @FileName :data_handler.py
- # @Time :2025/1/8 14:56
- # @Author :David
- # @Company: shenyang JY
- import argparse
- import pandas as pd
- from common.data_cleaning import *
- class DataHandler(object):
- def __init__(self, logger, args):
- self.logger = logger
- self.opt = argparse.Namespace(**args)
- def get_train_data(self, df):
- train_x, valid_x, train_y, valid_y = [], [], [], []
- if len(df) < self.opt.Model["time_step"]:
- self.logger.info("特征处理-训练数据-不满足time_step")
- datax, datay = self.get_timestep_features(df, is_train=True)
- if len(datax) < 10:
- self.logger.info("特征处理-训练数据-无法进行最小分割")
- tx, vx, ty, vy = self.train_valid_split(datax, datay, valid_rate=self.opt.Model["valid_data_rate"], shuffle=self.opt.Model['shuffle_train_data'])
- train_x.extend(tx)
- valid_x.extend(vx)
- train_y.extend(ty)
- valid_y.extend(vy)
- train_y = np.concatenate([[y.iloc[:, 1].values for y in train_y]], axis=0)
- valid_y = np.concatenate([[y.iloc[:, 1].values for y in valid_y]], axis=0)
- train_x = [np.array([x[0].values for x in train_x]), np.array([x[1].values for x in train_x])]
- valid_x = [np.array([x[0].values for x in valid_x]), np.array([x[1].values for x in valid_x])]
- return train_x, valid_x, train_y, valid_y
- def get_timestep_features(self, norm_data, is_train): # 这段代码基于pandas方法的优化
- time_step = self.opt.Model["time_step"]
- feature_data = norm_data.reset_index(drop=True)
- time_step_loc = time_step - 1
- train_num = int(len(feature_data))
- label_features = ['C_TIME', 'C_REAL_VALUE'] if is_train is True else ['C_TIME', 'C_REAL_VALUE']
- nwp_cs = self.opt.features
- nwp = [feature_data.loc[i:i + time_step_loc, nwp_cs].reset_index(drop=True) for i in range(train_num - time_step + 1)] # 数据库字段 'C_T': 'C_WS170'
- labels = [feature_data.loc[i:i + time_step_loc, label_features].reset_index(drop=True) for i in range(train_num - time_step + 1)]
- features_x, features_y = [], []
- self.logger.info("匹配环境前,{}组 -> ".format(len(nwp)))
- for i, row in enumerate(zip(nwp, labels)):
- features_x.append(row[0])
- features_y.append(row[1])
- self.logger.info("匹配环境后,{}组".format(len(features_x)))
- return features_x, features_y
- def fill_train_data(self, unite):
- unite['C_TIME'] = pd.to_datetime(unite['C_TIME'])
- unite['time_diff'] = unite['C_TIME'].diff()
- dt_short = pd.Timedelta(minutes=15)
- dt_long = pd.Timedelta(minutes=15 * self.opt.Model['how_long_fill'])
- data_train = self.missing_time_splite(unite, dt_short, dt_long)
- miss_points = unite[(unite['time_diff'] > dt_short) & (unite['time_diff'] < dt_long)]
- miss_number = miss_points['time_diff'].dt.total_seconds().sum(axis=0) / (15 * 60) - len(miss_points)
- self.logger.info("再次测算,需要插值的总点数为:{}".format(miss_number))
- if miss_number > 0 and self.opt.Model["train_data_fill"]:
- data_train = self.data_fill(data_train)
- return data_train
- def missing_time_splite(self, df, dt_short, dt_long):
- n_long, n_short, n_points = 0, 0, 0
- start_index = 0
- dfs = []
- for i in range(1, len(df)):
- if df['time_diff'][i] >= dt_long:
- df_long = df.iloc[start_index:i, :-1]
- dfs.append(df_long)
- start_index = i
- n_long += 1
- if df['time_diff'][i] > dt_short:
- self.logger.info(f"{df['C_TIME'][i-1]} ~ {df['C_TIME'][i]}")
- points = df['time_diff'].dt.total_seconds()[i]/(60*15)-1
- self.logger.info("缺失点数:{}".format(points))
- if df['time_diff'][i] < dt_long:
- n_short += 1
- n_points += points
- self.logger.info("需要补值的点数:{}".format(points))
- dfs.append(df.iloc[start_index:, :-1])
- self.logger.info(f"数据总数:{len(df)}, 时序缺失的间隔:{n_short}, 其中,较长的时间间隔:{n_long}")
- self.logger.info("需要补值的总点数:{}".format(n_points))
- return dfs
- def data_fill(self, dfs, test=False):
- dfs_fill, inserts = [], 0
- for i, df in enumerate(dfs):
- df = rm_duplicated(df, self.logger)
- df1 = df.set_index('C_TIME', inplace=False)
- dff = df1.resample('15T').interpolate(method='linear') # 采用线性补值,其他补值方法需要进一步对比
- dff.reset_index(inplace=True)
- points = len(dff) - len(df1)
- dfs_fill.append(dff)
- self.logger.info("{} ~ {} 有 {} 个点, 填补 {} 个点.".format(dff.iloc[0, 0], dff.iloc[-1, 0], len(dff), points))
- inserts += points
- name = "预测数据" if test is True else "训练集"
- self.logger.info("{}分成了{}段,实际一共补值{}点".format(name, len(dfs_fill), inserts))
- return dfs_fill
- def train_valid_split(self, datax, datay, valid_rate, shuffle):
- shuffle_index = np.random.permutation(len(datax))
- indexs = shuffle_index.tolist() if shuffle else np.arange(0, len(datax)).tolist()
- valid_size = int(len(datax) * valid_rate)
- valid_index = indexs[-valid_size:]
- train_index = indexs[:-valid_size]
- tx, vx, ty, vy = [], [], [], []
- for i, data in enumerate(zip(datax, datay)):
- if i in train_index:
- tx.append(data[0])
- ty.append(data[1])
- elif i in valid_index:
- vx.append(data[0])
- vy.append(data[1])
- return tx, vx, ty, vy
|