tf_bp.py 3.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp.py
  4. # @Time :2025/2/13 13:34
  5. # @Author :David
  6. # @Company: shenyang JY
  7. from tensorflow.keras.models import Sequential
  8. from tensorflow.keras.layers import Input, Dense, LSTM, concatenate, Conv1D, Conv2D, MaxPooling1D, Reshape, Flatten
  9. from tensorflow.keras.models import Model, load_model
  10. from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, TensorBoard, ReduceLROnPlateau
  11. from tensorflow.keras import optimizers, regularizers
  12. from models_processing.model_koi.losses import region_loss
  13. from models_processing.model_koi.settings import set_deterministic
  14. import numpy as np
  15. from common.database_dml_koi import *
  16. from threading import Lock
  17. import argparse
  18. model_lock = Lock()
  19. set_deterministic(42)
  20. class BPHandler(object):
  21. def __init__(self, logger, args):
  22. self.logger = logger
  23. self.opt = argparse.Namespace(**args)
  24. self.model = None
  25. def get_model(self, args):
  26. """
  27. 单例模式+线程锁,防止在异步加载时引发线程安全
  28. """
  29. try:
  30. with model_lock:
  31. loss = region_loss(self.opt)
  32. self.model = get_h5_model_from_mongo(args, {type(loss).__name__: loss})
  33. except Exception as e:
  34. self.logger.info("加载模型权重失败:{}".format(e.args))
  35. @staticmethod
  36. def get_keras_model(opt):
  37. loss = region_loss(opt)
  38. model = Sequential([
  39. Dense(64, input_dim=opt.Model['input_size'], activation='relu'), # 输入层和隐藏层,10个神经元
  40. Dense(32, activation='relu'), # 隐藏层,8个神经元
  41. Dense(16, activation='relu'), # 隐藏层,8个神经元
  42. Dense(1, activation='linear') # 输出层,1个神经元(用于回归任务)
  43. ])
  44. adam = optimizers.Adam(learning_rate=opt.Model['learning_rate'], beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=True)
  45. model.compile(loss=loss, optimizer=adam)
  46. return model
  47. def train_init(self):
  48. try:
  49. if self.opt.Model['add_train']:
  50. # 进行加强训练,支持修模
  51. loss = region_loss(self.opt)
  52. base_train_model = get_h5_model_from_mongo(vars(self.opt), {type(loss).__name__: loss})
  53. base_train_model.summary()
  54. self.logger.info("已加载加强训练基础模型")
  55. else:
  56. base_train_model = self.get_keras_model(self.opt)
  57. return base_train_model
  58. except Exception as e:
  59. self.logger.info("加载模型权重失败:{}".format(e.args))
  60. def training(self, train_and_valid_data):
  61. model = self.train_init()
  62. # tf.reset_default_graph() # 清除默认图
  63. train_x, train_y, valid_x, valid_y = train_and_valid_data
  64. print("----------", np.array(train_x[0]).shape)
  65. print("++++++++++", np.array(train_x[1]).shape)
  66. model.summary()
  67. early_stop = EarlyStopping(monitor='val_loss', patience=self.opt.Model['patience'], mode='auto')
  68. history = model.fit(train_x, train_y, batch_size=self.opt.Model['batch_size'], epochs=self.opt.Model['epoch'], verbose=2, validation_data=(valid_x, valid_y), callbacks=[early_stop], shuffle=False)
  69. loss = np.round(history.history['loss'], decimals=5)
  70. val_loss = np.round(history.history['val_loss'], decimals=5)
  71. self.logger.info("-----模型训练经过{}轮迭代-----".format(len(loss)))
  72. self.logger.info("训练集损失函数为:{}".format(loss))
  73. self.logger.info("验证集损失函数为:{}".format(val_loss))
  74. return model
  75. def predict(self, test_x, batch_size=1):
  76. result = self.model.predict(test_x, batch_size=batch_size)
  77. self.logger.info("执行预测方法")
  78. return result
  79. if __name__ == "__main__":
  80. run_code = 0