tf_cnn_pre.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :nn_bp_pre.py
  4. # @Time :2025/2/12 10:39
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import logging, argparse, traceback
  11. from common.database_dml_koi import *
  12. from common.processing_data_common import missing_features, str_to_list
  13. from data_processing.data_operation.data_handler import DataHandler
  14. from threading import Lock
  15. import time, yaml, os
  16. from copy import deepcopy
  17. model_lock = Lock()
  18. from itertools import chain
  19. from common.logs import Log
  20. from tf_cnn import CNNHandler
  21. # logger = Log('tf_bp').logger()
  22. logger = Log('tf_cnn').logger
  23. np.random.seed(42) # NumPy随机种子
  24. # tf.set_random_seed(42) # TensorFlow随机种子
  25. app = Flask('tf_cnn_pre——service')
  26. current_dir = os.path.dirname(os.path.abspath(__file__))
  27. with open(os.path.join(current_dir, 'cnn.yaml'), 'r', encoding='utf-8') as f:
  28. global_config = yaml.safe_load(f) # 只读的全局配置
  29. @app.before_request
  30. def update_config():
  31. # ------------ 整理参数,整合请求参数 ------------
  32. # 深拷贝全局配置 + 合并请求参数
  33. current_config = deepcopy(global_config)
  34. request_args = request.values.to_dict()
  35. # features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
  36. request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
  37. current_config.update(request_args)
  38. # 存储到请求上下文
  39. g.opt = argparse.Namespace(**current_config)
  40. g.dh = DataHandler(logger, current_config) # 每个请求独立实例
  41. g.cnn = CNNHandler(logger, current_config)
  42. @app.route('/tf_cnn_predict', methods=['POST'])
  43. def model_prediction_bp():
  44. # 获取程序开始时间
  45. start_time = time.time()
  46. result = {}
  47. success = 0
  48. dh = g.dh
  49. cnn = g.cnn
  50. args = deepcopy(g.opt.__dict__)
  51. logger.info("Program starts execution!")
  52. try:
  53. pre_data = get_data_from_mongo(args)
  54. if args.get('algorithm_test', 0):
  55. field_mapping = {'clearsky_ghi': 'clearskyGhi', 'dni_calcd': 'dniCalcd','surface_pressure': 'surfacePressure'}
  56. pre_data = pre_data.rename(columns=field_mapping)
  57. feature_scaler, target_scaler = get_scaler_model_from_mongo(args)
  58. cnn.opt.cap = round(target_scaler.transform(np.array([[float(args['cap'])]]))[0, 0], 2)
  59. cnn.get_model(args)
  60. dh.opt.features = json.loads(cnn.model_params)['Model']['features'].split(',')
  61. scaled_pre_x, pre_data = dh.pre_data_handler(pre_data, feature_scaler)
  62. logger.info("---------cap归一化:{}".format(cnn.opt.cap))
  63. res = list(chain.from_iterable(target_scaler.inverse_transform(cnn.predict(scaled_pre_x))))
  64. pre_data['farm_id'] = args.get('farm_id', 'null')
  65. if int(args.get('algorithm_test', 0)):
  66. pre_data[args['model_name']] = res[:len(pre_data)]
  67. pre_data.rename(columns={args['col_time']: 'dateTime'}, inplace=True)
  68. pre_data = pre_data[['dateTime', 'farm_id', args['target'], args['model_name'], 'dq']]
  69. pre_data = pre_data.melt(id_vars=['dateTime', 'farm_id', args['target']], var_name='model', value_name='power_forecast')
  70. res_cols = ['dateTime', 'power_forecast', 'farm_id', args['target'], 'model']
  71. if 'howLongAgo' in args:
  72. pre_data['howLongAgo'] = int(args['howLongAgo'])
  73. res_cols += ['howLongAgo']
  74. else:
  75. pre_data['power_forecast'] = res[:len(pre_data)]
  76. pre_data.rename(columns={args['col_time']: 'date_time'}, inplace=True)
  77. res_cols = ['date_time', 'power_forecast', 'farm_id']
  78. pre_data = pre_data[res_cols]
  79. pre_data.loc[:, 'power_forecast'] = pre_data['power_forecast'].round(2)
  80. pre_data.loc[pre_data['power_forecast'] > float(args['cap']), 'power_forecast'] = float(args['cap'])
  81. pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  82. insert_data_into_mongo(pre_data, args)
  83. success = 1
  84. except Exception as e:
  85. my_exception = traceback.format_exc()
  86. my_exception.replace("\n", "\t")
  87. result['msg'] = my_exception
  88. end_time = time.time()
  89. result['success'] = success
  90. result['args'] = args
  91. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  92. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  93. print("Program execution ends!")
  94. return result
  95. if __name__ == "__main__":
  96. print("Program starts execution!")
  97. from waitress import serve
  98. serve(app, host="0.0.0.0", port=10112,
  99. threads = 8, # 指定线程数(默认4,根据硬件调整)
  100. channel_timeout = 600 # 连接超时时间(秒)
  101. )
  102. print("server start!")
  103. # ------------------------测试代码------------------------
  104. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  105. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083_test', 'col_time': 'date_time', 'mongodb_write_table': 'j00083_rs',
  106. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  107. # args_dict['features'] = args_dict['features'].split(',')
  108. # arguments.update(args_dict)
  109. # dh = DataHandler(logger, arguments)
  110. # cnn = CNNHandler(logger)
  111. # opt = argparse.Namespace(**arguments)
  112. #
  113. # opt.Model['input_size'] = len(opt.features)
  114. # pre_data = get_data_from_mongo(args_dict)
  115. # feature_scaler, target_scaler = get_scaler_model_from_mongo(arguments)
  116. # pre_x = dh.pre_data_handler(pre_data, feature_scaler, opt)
  117. # cnn.get_model(arguments)
  118. # result = cnn.predict(pre_x)
  119. # result1 = list(chain.from_iterable(target_scaler.inverse_transform([result.flatten()])))
  120. # pre_data['power_forecast'] = result1[:len(pre_data)]
  121. # pre_data['farm_id'] = 'J00083'
  122. # pre_data['cdq'] = 1
  123. # pre_data['dq'] = 1
  124. # pre_data['zq'] = 1
  125. # pre_data.rename(columns={arguments['col_time']: 'date_time'}, inplace=True)
  126. # pre_data = pre_data[['date_time', 'power_forecast', 'farm_id', 'cdq', 'dq', 'zq']]
  127. #
  128. # pre_data['power_forecast'] = pre_data['power_forecast'].round(2)
  129. # pre_data.loc[pre_data['power_forecast'] > opt.cap, 'power_forecast'] = opt.cap
  130. # pre_data.loc[pre_data['power_forecast'] < 0, 'power_forecast'] = 0
  131. #
  132. # insert_data_into_mongo(pre_data, arguments)