tf_bp_train.py 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. #!/usr/bin/env python
  2. # -*- coding:utf-8 -*-
  3. # @FileName :tf_bp_train.py
  4. # @Time :2025/2/13 13:35
  5. # @Author :David
  6. # @Company: shenyang JY
  7. import json
  8. import numpy as np
  9. from flask import Flask, request, g
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from copy import deepcopy
  15. from models_processing.model_tf.tf_bp import BPHandler
  16. from common.database_dml_koi import *
  17. import matplotlib.pyplot as plt
  18. from common.logs import Log
  19. logger = Log('tf_bp').logger
  20. np.random.seed(42) # NumPy随机种子
  21. app = Flask('tf_bp_train——service')
  22. current_dir = os.path.dirname(os.path.abspath(__file__))
  23. with open(os.path.join(current_dir, 'bp.yaml'), 'r', encoding='utf-8') as f:
  24. global_config = yaml.safe_load(f) # 只读的全局配置
  25. @app.before_request
  26. def update_config():
  27. # ------------ 整理参数,整合请求参数 ------------
  28. # 深拷贝全局配置 + 合并请求参数
  29. current_config = deepcopy(global_config)
  30. request_args = request.values.to_dict()
  31. # features参数规则:1.有传入,解析,覆盖 2. 无传入,不覆盖,原始值
  32. request_args['features'] = request_args['features'].split(',') if 'features' in request_args else current_config['features']
  33. current_config.update(request_args)
  34. # 存储到请求上下文
  35. g.opt = argparse.Namespace(**current_config)
  36. g.dh = DataHandler(logger, current_config) # 每个请求独立实例
  37. g.bp = BPHandler(logger, current_config)
  38. @app.route('/tf_bp_training', methods=['POST'])
  39. def model_training_bp():
  40. # 获取程序开始时间
  41. start_time = time.time()
  42. result = {}
  43. success = 0
  44. dh = g.dh
  45. bp = g.bp
  46. args = deepcopy(g.opt.__dict__)
  47. logger.info("Program starts execution!")
  48. try:
  49. # ------------ 获取数据,预处理训练数据 ------------
  50. train_data = get_data_from_mongo(args)
  51. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, bp_data=True)
  52. bp.opt.cap = round(scaled_cap, 2)
  53. bp.opt.Model['input_size'] = len(dh.opt.features)
  54. # ------------ 训练模型 ------------
  55. # 1. 如果是加强训练模式,先加载预训练模型特征参数,再预处理训练数据
  56. # 2. 如果是普通模式,先预处理训练数据,再根据训练数据特征加载模型
  57. model = bp.train_init() if bp.opt.Model['add_train'] else bp.get_keras_model(bp.opt)
  58. if bp.opt.Model['add_train']:
  59. if model:
  60. feas = json.loads(bp.model_params)['features']
  61. if set(feas).issubset(set(dh.opt.features)):
  62. dh.opt.features = list(feas)
  63. train_x, train_y, valid_x, valid_y, scaled_train_bytes, scaled_target_bytes, scaled_cap = dh.train_data_handler(train_data, bp_data=True)
  64. else:
  65. model = bp.get_keras_model(bp.opt)
  66. logger.info("训练数据特征,不满足,加强训练模型特征")
  67. else:
  68. model = bp.get_keras_model(bp.opt)
  69. bp_model = bp.training(model, [train_x, train_y, valid_x, valid_y])
  70. # ------------ 保存模型 ------------
  71. args['Model']['features'] = ','.join(dh.opt.features)
  72. args['params'] = json.dumps(args)
  73. args['descr'] = '测试'
  74. args['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  75. insert_trained_model_into_mongo(bp_model, args)
  76. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  77. success = 1
  78. except Exception as e:
  79. my_exception = traceback.format_exc()
  80. my_exception.replace("\n", "\t")
  81. result['msg'] = my_exception
  82. end_time = time.time()
  83. result['success'] = success
  84. result['args'] = args
  85. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  86. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  87. print("Program execution ends!")
  88. return result
  89. if __name__ == "__main__":
  90. print("Program starts execution!")
  91. from waitress import serve
  92. serve(
  93. app,
  94. host="0.0.0.0",
  95. port=10111,
  96. threads=8, # 指定线程数(默认4,根据硬件调整)
  97. channel_timeout=600 # 连接超时时间(秒)
  98. )
  99. # print("server start!")
  100. # args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  101. # 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  102. # 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  103. # args_dict['features'] = args_dict['features'].split(',')
  104. # arguments.update(args_dict)
  105. # dh = DataHandler(logger, arguments)
  106. # bp = BPHandler(logger)
  107. # opt = argparse.Namespace(**arguments)
  108. # opt.Model['input_size'] = len(opt.features)
  109. # train_data = get_data_from_mongo(args_dict)
  110. # train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt, bp_data=True)
  111. # bp_model = bp.training(opt, [train_x, train_y, valid_x, valid_y])
  112. #
  113. # args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  114. # args_dict['params'] = arguments
  115. # args_dict['descr'] = '测试'
  116. # insert_trained_model_into_mongo(bp_model, args_dict)
  117. # insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)