tf_cnn_train.py 3.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # time: 2024/5/6 13:25
  4. # file: time_series.py
  5. # author: David
  6. # company: shenyang JY
  7. import json, copy
  8. import numpy as np
  9. from flask import Flask, request
  10. import traceback
  11. import logging, argparse
  12. from data_processing.data_operation.data_handler import DataHandler
  13. import time, yaml
  14. from models_processing.model_koi.tf_cnn import CNNHandler
  15. from common.database_dml import *
  16. import matplotlib.pyplot as plt
  17. from common.logs import Log
  18. logger = logging.getLogger()
  19. # logger = Log('models-processing').logger
  20. np.random.seed(42) # NumPy随机种子
  21. # tf.set_random_seed(42) # TensorFlow随机种子
  22. app = Flask('tf_cnn_train——service')
  23. with app.app_context():
  24. with open('../model_koi/cnn.yaml', 'r', encoding='utf-8') as f:
  25. arguments = yaml.safe_load(f)
  26. dh = DataHandler(logger, arguments)
  27. cnn = CNNHandler(logger)
  28. @app.route('/nn_bp_training', methods=['POST'])
  29. def model_training_bp():
  30. # 获取程序开始时间
  31. start_time = time.time()
  32. result = {}
  33. success = 0
  34. print("Program starts execution!")
  35. args_dict = request.values.to_dict()
  36. args = arguments.deepcopy()
  37. args.update(args_dict)
  38. try:
  39. opt = argparse.Namespace(**args)
  40. logger.info(args_dict)
  41. train_data = get_data_from_mongo(args_dict)
  42. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
  43. bp_model = cnn.training(opt, [train_x, valid_x, train_y, valid_y])
  44. args_dict['params'] = json.dumps(args)
  45. args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  46. insert_trained_model_into_mongo(bp_model, args_dict)
  47. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
  48. success = 1
  49. except Exception as e:
  50. my_exception = traceback.format_exc()
  51. my_exception.replace("\n", "\t")
  52. result['msg'] = my_exception
  53. end_time = time.time()
  54. result['success'] = success
  55. result['args'] = args
  56. result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
  57. result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
  58. print("Program execution ends!")
  59. return result
  60. if __name__ == "__main__":
  61. print("Program starts execution!")
  62. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
  63. logger = logging.getLogger("model_training_bp log")
  64. from waitress import serve
  65. # serve(app, host="0.0.0.0", port=10103, threads=4)
  66. print("server start!")
  67. args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
  68. 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
  69. 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
  70. args_dict['features'] = args_dict['features'].split(',')
  71. arguments.update(args_dict)
  72. dh = DataHandler(logger, arguments)
  73. cnn = CNNHandler(logger)
  74. opt = argparse.Namespace(**arguments)
  75. opt.Model['input_size'] = len(opt.features)
  76. train_data = get_data_from_mongo(args_dict)
  77. train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
  78. cnn_model = cnn.training(opt, [train_x, train_y, valid_x, valid_y])
  79. args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
  80. args_dict['params'] = arguments
  81. args_dict['descr'] = '测试'
  82. insert_trained_model_into_mongo(cnn_model, args_dict)
  83. insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)