12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- # time: 2024/5/6 13:25
- # file: time_series.py
- # author: David
- # company: shenyang JY
- import json, copy
- import numpy as np
- from flask import Flask, request
- import traceback
- import logging, argparse
- from data_processing.data_operation.data_handler import DataHandler
- import time, yaml
- from models_processing.model_koi.tf_cnn import CNNHandler
- from common.database_dml import *
- import matplotlib.pyplot as plt
- from common.logs import Log
- logger = logging.getLogger()
- # logger = Log('models-processing').logger
- np.random.seed(42) # NumPy随机种子
- # tf.set_random_seed(42) # TensorFlow随机种子
- app = Flask('tf_cnn_train——service')
- with app.app_context():
- with open('../model_koi/cnn.yaml', 'r', encoding='utf-8') as f:
- arguments = yaml.safe_load(f)
- dh = DataHandler(logger, arguments)
- cnn = CNNHandler(logger)
- @app.route('/nn_bp_training', methods=['POST'])
- def model_training_bp():
- # 获取程序开始时间
- start_time = time.time()
- result = {}
- success = 0
- print("Program starts execution!")
- args_dict = request.values.to_dict()
- args = arguments.deepcopy()
- args.update(args_dict)
- try:
- opt = argparse.Namespace(**args)
- logger.info(args_dict)
- train_data = get_data_from_mongo(args_dict)
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
- bp_model = cnn.training(opt, [train_x, valid_x, train_y, valid_y])
- args_dict['params'] = json.dumps(args)
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
- insert_trained_model_into_mongo(bp_model, args_dict)
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args)
- success = 1
- except Exception as e:
- my_exception = traceback.format_exc()
- my_exception.replace("\n", "\t")
- result['msg'] = my_exception
- end_time = time.time()
- result['success'] = success
- result['args'] = args
- result['start_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(start_time))
- result['end_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(end_time))
- print("Program execution ends!")
- return result
- if __name__ == "__main__":
- print("Program starts execution!")
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger("model_training_bp log")
- from waitress import serve
- # serve(app, host="0.0.0.0", port=10103, threads=4)
- print("server start!")
- args_dict = {"mongodb_database": 'david_test', 'scaler_table': 'j00083_scaler', 'model_name': 'bp1.0.test',
- 'model_table': 'j00083_model', 'mongodb_read_table': 'j00083', 'col_time': 'dateTime',
- 'features': 'speed10,direction10,speed30,direction30,speed50,direction50,speed70,direction70,speed90,direction90,speed110,direction110,speed150,direction150,speed170,direction170'}
- args_dict['features'] = args_dict['features'].split(',')
- arguments.update(args_dict)
- dh = DataHandler(logger, arguments)
- cnn = CNNHandler(logger)
- opt = argparse.Namespace(**arguments)
- opt.Model['input_size'] = len(opt.features)
- train_data = get_data_from_mongo(args_dict)
- train_x, valid_x, train_y, valid_y, scaled_train_bytes, scaled_target_bytes = dh.train_data_handler(train_data, opt)
- cnn_model = cnn.training(opt, [train_x, train_y, valid_x, valid_y])
- args_dict['gen_time'] = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
- args_dict['params'] = arguments
- args_dict['descr'] = '测试'
- insert_trained_model_into_mongo(cnn_model, args_dict)
- insert_scaler_model_into_mongo(scaled_train_bytes, scaled_target_bytes, args_dict)
|